
set algebra1
1 This sample output from Jupyter
Notebook is formatted using Tufte-
Handout Class with additions. This
style choice is arbitrary, since any LATEX
style may be used or developed for
handsome LATEX/PDF output.

1 Set algebra with Python scripts

Set theory is a branch of mathematical logic that studies sets,
which informally are collections of objects. Although any type of
object can be collected into a set, set theory is applied most often
to objects that are relevant to mathematics. The language of set
theory can be used in the definitions of nearly all mathematical
objects.

Set theory is commonly employed as a foundational system for
modern mathematics, particularly in the form of Zermelo–Fraenkel
set theory with the axiom of choice.

Python offers a native data structure called set, which can be used
as a proxy for a mathematical set for almost all purposes.2 2 Boxing each code snippet and its

result makes reading the code easier.

In [8]: import IPython.display as disp

1.1 Various ways to create a ’set’ object in Python

In [4]: # Directly with curly braces

Set1 = {1,2}

print (Set1)

{1, 2}

In [5]: type(Set1)

Out[5]: set

In [6]: # By calling the 'set' function i.e. typecasting

Set2 = set({2,3})

print(Set2)

{2, 3}

In [7]: my_list=[1,2,3,4]

my_set_from_list = set(my_list)

print(my_set_from_list)

{1, 2, 3, 4}

** Empty (Null) set is a special set **

∀x, x /∈ ∅

(Sample adapted from
StatsUsingPython:
Set_Algebra_with_Python.ipynb
by Tirthajyoti Sarkar, PhD.

Click on link above to see the original
Jupyter Notebook.

https://en.wikipedia.org/wiki/Zermelo-Fraenkel_set_theory
https://en.wikipedia.org/wiki/Zermelo-Fraenkel_set_theory
https://en.wikipedia.org/wiki/Axiom_of_choice
https://nbviewer.jupyter.org/github/tirthajyoti/StatsUsingPython/blob/master/Set_Algebra_with_Python.ipynb
https://nbviewer.jupyter.org/github/tirthajyoti/StatsUsingPython/blob/master/Set_Algebra_with_Python.ipynb

set algebra 2

; Do not try to create the empty set by declaring an empty {}. That
denotes an empty dictionary object:

In [8]: my_set = {}

print(type(my_set))

<class 'dict'>

⇒ Instead, use the set() function to create the empty (null) set from any
empty data type e.g. dictionary or list

In [9]: my_set = set({})

print(type(my_set))

my_set_2 = set([])

print(type(my_set_2))

<class 'set'>

<class 'set'>

2 Membership and size testing

2.1 Membership testing by ’in’ and ’not in’ keywords

In [10]: my_set = set([1,3,5])

print("Here is my set:",my_set)

print("1 is in the set:",1 in my_set)

print("2 is in the set:",2 in my_set)

print("4 is NOT in the set:",4 not in my_set)

Here is my set: {1, 3, 5}

1 is in the set: True

2 is in the set: False

4 is NOT in the set: True

2.2 Size checking by ’len’ or ’not’

In [11]: S = {1,2}

not S

Out[11]: False

In [12]: T = set()

not T

Out[12]: True

set algebra 3

In [13]: print("Size of S:", len(S))

print("Size of T:", len(T))

Size of S: 2

Size of T: 0

3 Venn diagrams

In [14]: import matplotlib.pyplot as plt

import matplotlib_venn as venn

S = {1, 2, 3}

T = {0, 2, -1, 5}

venn.venn2([S, T], set_labels=('S','T'))

plt.show()

In [15]:

venn.venn3(subsets

=(1, 1,

1, 2,

1, 2,

2), set_labels =

('Set1', 'Set2', 'Set3'))

plt.show()

4 Set relations

• Subset
• Superset
• Disjoint
• Universal set
• Null set

In [16]: Univ = set([x for x in range(11)])

Super = set([x for x in range(11) if x%2==0])

disj = set([x for x in range(11) if x%2==1])

Sub = set([4,6])

Null = set([x for x in range(11) if x>10])

set algebra 4

In [17]: print("Universal set (all the positive integers up to 10):",Univ)

print("All the even positive integers up to 10:",Super)

print("All the odd positive integers up to 10:",disj)

print("Set of 2 elements, 4 and 6:",Sub)

print("A null set:", Null)

Universal set (all the positive integers up to 10): {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

All the even positive integers up to 10: {0, 2, 4, 6, 8, 10}

All the odd positive integers up to 10: {1, 3, 5, 7, 9}

Set of 2 elements, 4 and 6: {4, 6}

A null set: set()

In [18]: Super.issuperset(Sub)

Out[18]: True

5 Algebra of inclusion

If A, B and C are sets then the following hold:

Reflexivity
A ⊆ A

Antisymmetry

A ⊆ B and B ⊆ A if and only if A = B

Transitivity

If A ⊆ B and B ⊆ C, then A ⊆ C

6 Set algebra/Operations

• Equality
• Intersection
• Union
• Complement
• Difference
• Cartesian product

set algebra 5

6.1 Intersection between sets

In mathematics, the intersection A ∩ B of two sets A and B is the
set that contains all elements of A that also belong to B (or equiva-
lently, all elements of B that also belong to A), but no other elements.
Formally,

A ∩ B = {x : x ∈ A and x ∈ B}.

Figure 1: Set intersection

In [27]: # Define a set using list comprehension

S1 = set([x for x in range(1,11) if x%3==0])

print("S1:", S1)

S1: {9, 3, 6}

In [28]: S2 = set([x for x in range(1,5)])

print("S2:", S2)

S2: {1, 2, 3, 4}

In [29]: # Both intersection method or & can be used

S_intersection = S1.intersection(S2)

print("Intersection of S1 and S2:", S_intersection)

S_intersection = S1 & S2

print("Intersection of S1 and S2:", S_intersection)

Intersection of S1 and S2: {3}

Intersection of S1 and S2: {3}

set algebra 6

** One can chain the methods to get intersection with more than 2 sets **

In [30]: S3 = set([x for x in range(4,10)])

print("S3:", S3)

S3: {4, 5, 6, 7, 8, 9}

In [31]: S1_S2_S3 = S1.intersection(S2).intersection(S3)

print("Intersection of S1, S2, and S3:", S1_S2_S3)

Intersection of S1, S2, and S3: set()

** Now change the S3 to contain 3**

In [32]: S3 = set([x for x in range(3,10)])

print("S3:", S3)

S1_S2_S3 = S1.intersection(S2).intersection(S3)

print("Intersection of S1, S2, and S3:", S1_S2_S3)

S3: {3, 4, 5, 6, 7, 8, 9}

Intersection of S1, S2, and S3: {3}

6.2 The symbol ’&’ can be used for intersection

In [1]: A = {1, 2, 3}

B = {5,3,1}

print("Intersection of {} and {} is: {} with size {}".format(A,B,A&B,len(A&B)))

Intersection of {1, 2, 3} and {1, 3, 5} is: {1, 3} with size 2

Figure 2: 3 sets intersection

Commutative law:
A ∩ B = B ∩ A

Associative law:

(A ∩ B) ∩ C = A ∩ (B ∩ C)

	Set algebra with Python scripts
	Membership and size testing
	Venn diagrams
	Set relations
	Algebra of inclusion
	Set algebra/Operations

