set algebra ${ }^{1}$

1 Set algebra with Python scripts

Set theory is a branch of mathematical logic that studies sets, which informally are collections of objects. Although any type of object can be collected into a set, set theory is applied most often to objects that are relevant to mathematics. The language of set theory can be used in the definitions of nearly all mathematical objects.

Set theory is commonly employed as a foundational system for modern mathematics, particularly in the form of Zermelo-Fraenkel set theory with the axiom of choice.

Python offers a native data structure called set, which can be used as a proxy for a mathematical set for almost all purposes. ${ }^{2}$

```
In [8]: import IPython.display as disp
1.1 Various ways to create a 'set' object in Python
```

In [4]: \# Directly with curly braces
Set1 = \{1,2\}
print (Set1)
$\{1,2\}$

```
```

In [4]: \# Directly with curly braces

```
In [4]: # Directly with curly braces
    Set1 = {1,2}
    Set1 = {1,2}
    print (Set1)
    print (Set1)
{1, 2}
```

{1, 2}

```
```

```
In [7]: my_list=[1,2,3,4]
```

```
In [7]: my_list=[1,2,3,4]
    my_set_from_list = set(my_list)
    my_set_from_list = set(my_list)
    print(my_set_from_list)
```

```
    print(my_set_from_list)
```

```
\(\{1,2,3,4\}\)
```

In [5]: type(Set1)

```
In [5]: type(Set1)
Out[5]: set
Out[5]: set
In [6]: # By calling the 'set' function i.e. typecasting
    Set2 = set({2,3})
    print(Set2)
\(\{2,3\}\)
```

$$
\forall x, x \notin \varnothing
$$

${ }^{1}$ This sample output from Jupyter Notebook is formatted using TufteHandout Class with additions. This style choice is arbitrary, since any $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ style may be used or developed for handsome ${ }^{\text {ETG }} \mathrm{EX} / \mathrm{PDF}$ output.
${ }^{2}$ Boxing each code snippet and its result makes reading the code easier.
(Sample adapted from StatsUsingPython: Set_Algebra_with_Python.ipynb by Tirthajyoti Sarkar, PhD.
Click on link above to see the original Jupyter Notebook.

Do not try to create the empty set by declaring an empty \{\}. That denotes an empty dictionary object:

```
In [8]: my_set = {}
    print(type(my_set))
<class 'dict'>
```

Instead, use the set() function to create the empty (null) set from any empty data type e.g. dictionary or list

```
In [9]: my_set = set({})
    print(type(my_set))
    my_set_2 = set([])
    print(type(my_set_2))
<class 'set'>
<class 'set'>
```

2 Membership and size testing
2.1 Membership testing by 'in' and 'not in' keywords

```
In [10]: my_set = set([1,3,5])
    print("Here is my set:",my_set)
    print("1 is in the set:",1 in my_set)
    print("2 is in the set:",2 in my_set)
    print("4 is NOT in the set:",4 not in my_set)
Here is my set: {1, 3, 5}
1 is in the set: True
2 is in the set: False
4 is NOT in the set: True
```

2.2 Size checking by 'len' or 'not'

```
In [11]: S = {1,2}
    not S
Out[11]: False
```

```
In [12]: T = set()
    not T
Out[12]: True
```

```
In [13]: print("Size of S:", len(S))
    print("Size of T:", len(T))
Size of S: 2
Size of T: 0
```


3 Venn diagrams

```
In [14]: import matplotlib.pyplot as plt
    import matplotlib_venn as venn
    S = {1, 2, 3}
    T = {0, 2, -1, 5}
    venn.venn2([S, T], set_labels=('S','T'))
    plt.show()
```

In [15]:
venn. venn3(subsets
$=(1,1$,
1, 2,
1, 2,
2), set_labels =
('Set1', 'Set2', 'Set3'))
plt.show()

4 Set relations

- Subset

- Superset
- Disjoint
- Universal set
- Null set

```
In [16]: Univ = set([x for x in range(11)])
    Super = set([x for x in range(11) if x%2==0])
    disj = set([x for x in range(11) if x%2==1])
    Sub = set([4,6])
    Null = set([x for x in range(11) if x>10])
```


Set3

```
In [17]: print("Universal set (all the positive integers up to 10):",Univ)
    print("All the even positive integers up to 10:",Super)
    print("All the odd positive integers up to 10:",disj)
    print("Set of 2 elements, 4 and 6:",Sub)
    print("A null set:", Null)
Universal set (all the positive integers up to 10): {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
All the even positive integers up to 10: {0, 2, 4, 6, 8, 10}
All the odd positive integers up to 10: {1, 3, 5, 7, 9}
Set of 2 elements, 4 and 6: {4, 6}
A null set: set()
```

In [18]: Super.issuperset(Sub)
Out[18]: True

5 Algebra of inclusion

If A, B and C are sets then the following hold:

Reflexivity

$$
A \subseteq A
$$

Antisymmetry

$A \subseteq B$ and $B \subseteq A$ if and only if $A=B$

Transitivity

$$
\text { If } A \subseteq B \text { and } B \subseteq C \text {, then } A \subseteq C
$$

6 Set algebra/Operations

- Equality

- Intersection
- Union
- Complement
- Difference
- Cartesian product
6.1 Intersection between sets

In mathematics, the intersection $A \cap B$ of two sets A and B is the set that contains all elements of A that also belong to B (or equivalently, all elements of B that also belong to A), but no other elements. Formally,

$$
A \cap B=\{x: x \in A \text { and } x \in B\} .
$$


```
In [27]: # Define a set using list comprehension
    S1 = set([x for x in range(1,11) if x%3==0])
    print("S1:", S1)
```

S1: $\{9,3,6\}$

In [28]: S2 = set([x for x in range(1,5)])
print("S2:", S2)
S2: $\{1,2,3,4\}$

```
In [29]: # Both intersection method or & can be used
    S_intersection = S1.intersection(S2)
    print("Intersection of S1 and S2:", S_intersection)
    S_intersection = S1 & S2
    print("Intersection of S1 and S2:", S_intersection)
Intersection of S1 and S2: {3}
Intersection of S1 and S2: {3}
```

** One can chain the methods to get intersection with more than 2 sets **

```
In [30]: S3 = set([x for x in range(4,10)])
    print("S3:", S3)
S3: {4, 5, 6, 7, 8, 9}
In [31]: S1_S2_S3 = S1.intersection(S2).intersection(S3)
    print("Intersection of S1, S2, and S3:", S1_S2_S3)
Intersection of S1, S2, and S3: set()
    ** Now change the S3 to contain 3**
In [32]: S3 = set([x for x in range(3,10)])
    print("S3:", S3)
    S1_S2_S3 = S1.intersection(S2).intersection(S3)
    print("Intersection of S1, S2, and S3:", S1_S2_S3)
```

S3: $\{3,4,5,6,7,8,9\}$
Intersection of S1, S2, and S3: \{3\}
6.2 The symbol 'E' can be used for intersection

```
In [1]: A = {1, 2, 3}
    B = {5,3,1}
    print("Intersection of {} and {} is: {} with size {}".format(A,B,A&B,len(A&B)))
Intersection of {1, 2, 3} and {1, 3, 5} is: {1, 3} with size 2
```


Commutative law:

$$
A \cap B=B \cap A
$$

Associative law:

$$
(A \cap B) \cap C=A \cap(B \cap C)
$$

