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Stochastic processes
govern the world!

Sometimes we are rudely
awakened to this fact when a
really catastrophic event
happens such as an
earthquake with unexpected
strength at an unexpected
location.

That is the gist of non-traditional
stochastic modeling: accounting
for “unexpected events."
Although such events cannot be
predicted, they can be modeled.

Stochastic modeling has been at
the heart of science and
engineering for a long time,
starting with the work of Pascal
on games and then Gauss on

measurement errors, leading to
the binomial distribution and in
the limit, the Gaussian
distribution. Many random
physical phenomena are indeed
governed by such distributions, a
lot of theory has been developed
for them and they have invaded
engineering ranging from the
design of electronic amplifiers
and telecommunication links to
helicopter control via Kalman
filtering. Somehow, and thanks to
the famous (Lindeberg-Lévy)
central limit theorem, there is a
belief that when you have the sum
of a large number of presumably
small effects, you automatically
get a near-Gaussian distribution
and that therefore all stochastic
disturbances in engineering can
be meaningfully modeled by
Gaussian models. . .
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The truth, however, is much more complex. Many
natural and human-made probabilistic phenomena
do not adhere to a Gaussian distribution.

This is already pretty evident from the
properties of the latter. It has a very
pronounced average value; the
distribution is symmetric around that
value and tapers off exponentially.
Three or four “sigmas” away (sigma is
a number equal to the standard
deviation of the random variable) and
the probability that the process has
such a value is virtually nil. Already
early on in the development of
probability theory, the famous French
mathematician Lévy defined a
continuous distribution function for a
new class of positive random
variables, characteristic of some
physical effects in spectroscopy and
deviating from the Gaussian case.
That new distribution has then been
found useful for the modeling of
economic effects such as the return
on shares in the stock market. Pareto
drew the attention of the economic
community to these so-called “power
law probability distributions,” a class of
distributions that are described by a
power law and hence have a “fat tail,”
leading to statements such as “80% of
world’s wealth is in 20% of the hands.”

It seems that many meaningful
distributions obey such laws: e.g., size

of islands, Internet traffic, 1/f noise,
size of sand particles, you name it –
reason enough to give these
distributions a great deal of attention!

Probability theorists generalized the
distributions discovered by Lévy and
Pareto and defined a class that they
called “stable distributions.” By this
they meant that a sum of two random
variables with such a distribution has
again such a distribution.

This then appears to be an eminently
useful class for modeling a great many
basic phenomena in nature,
engineering and economics, greatly
generalizing the work done with
Gaussian distributions (stable as well,
but in a very special case). Very early
on, however, problems with this
approach appeared. It turns out that
there is no closed-form expression for
a general stable distribution, even
though its so-called “characteristic
function” (the Fourier transform of its
distribution) is fully defined by four
numerical quantities. Equally serious
is the problem of determining the
resulting distribution when a random
variable with a stable distribution is
driving a process (“is filtered,” one
says).
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tM
ün

ch
en

/I
ns

tit
ut

e
fo

r
A

dv
an

ce
d

S
tu

dy



TUM-IAS Primary Sources

Presenting Robert Stelzer’s Primary Sources Essay

Foreword

Featured Essay

Author Profile

About
Primary Sources

The need to address the latter,
fundamental problem crystallized one
of the first Focus Groups at the TUM
Institute for Advanced Study. Under
the inspired leadership of Prof.
Claudia Klüppelberg the problem of
modeling systems driven by stable
distributions was tackled both
fundamentally and in relation to a
variety of potential applications. Dr.
(now Prof.) Robert Stelzer studied the
filtering problem in depth, and the
results of his investigations are
described in this issue of Primary
Sources. The results should be useful
for a wide range of interesting
scientific and engineering cases.
Distributions do not come alone; they
are integral parts of an overall system.
A wind
turbine, for
instance, is
a dynamical
system that is
being driven
by wind
stochastics.
Nanoscale
circuits
undergo
fluctuations
that influence
their output. In such cases the basic
system that is being driven can be
modeled from its physics. Less clear
is the situation for biological and
economic systems, except that one
may presuppose an underlying but
unknown mathematical system
description.

The point of view taken by Robert
Stelzer is characteristic for a signal
processing approach. He models the
underlying system by a so-called
CARMA filter – the horrible acronym
standing for Continuous-time Auto
Regressive Moving Average system.

This is a pretty general approach,
applicable to linear time-invariant
systems evolving in continuous time.
From basic analysis we know that
functions on an interval can often be
represented by a ratio of polynomials
(e.g., a rational approximation). When
one does that to a transfer function in
continuous time, one obtains a
CARMA filter. The situation is then
viewed as a filter processing a random

process and
producing
a stochastic
output.
In many
situations
encountered
in practice,
one wishes
to identify
both the filter
coefficients
and the

parameters of the driving noise. The
information obtained then
characterizes the situation fully. That
is precisely what the paper does for
the more general statistical model it
considers. But the paper goes a step
further. It does not restrict itself to the
filtering situation.
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Often, the filter is just an input-output
description of a more complex
structure, in the system theory
literature called a “dynamical system”
– i.e., a system that contains a
physical state, which evolves in time.
The original Kalman filter is actually a
“state estimator.” Under Gaussian
assumptions it makes sense to predict
the state as well as possible on the
basis of past observations; the
difference between the predicted state
and the actual one, called the
“innovation,” will be fully random and
as small as possible. When the
system is driven by a Lévy-Pareto
process, the situation is very different.
Least squares state prediction does
not make much sense any more;
much more important is to estimate
the regime the system is in, as it can
undergo drastic changes. Stelzer
addresses the issue to estimate both
the parameters of the system and the
statistics of the driving process, hence
obtaining maximal information
compatible with the stochastic
situation.

One of the goals of our
publication, Primary
Sources, is to inform a
scientifically savvy audience
about important new
concepts and methods that
may influence their
thinking.

Number one in the series is the paper
by Stelzer, and fittingly so, as it
presents not only an important new
technique, but also one with a wealth
of potential applications. The
TUM-IAS Focus Group of Klüppelberg
and Stelzer has gone to great lengths
connecting with potential appliers:
designers of wind parks (for
renewable energy), groups that are
interested in deriving phenotypes from
DNA, civil engineers studying risks
associated with the structures they
build, economists trying to minimize
risk in trading, ecologists wanting to
understand the statistical properties of
natural processes, electrical
engineers designing smart grids, and
even fundamental physicists studying
the erratic phenomena of
nanosystems. Systems driven by
Lévy-Pareto processes are indeed
everywhere. And for new tools that
could help ”get a grip” on them all,
scientists and engineers need look no
further than these pages.

Professor Patrick Dewilde, director of
the TUM Institute for Advanced Study
and scientific editor of TUM-IAS Primary
Souces, can be reached at
dewilde@zv.tum.de.
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CARMA processes driven
by non-Gaussian noise
Robert Stelzer1

We present an outline of the theory of certain Lévy-driven, multivariate
stochastic processes, where the processes are represented by rational
transfer functions (Continuous-time AutoRegressive Moving Average or
CARMA models) and their applications in non-Gaussian time series
modeling. We discuss in detail their definition, their spectral
representation, the equivalence to linear state space models and
further properties like the second-order structure and the tail behavior
under a heavy-tailed input. Furthermore, we study the estimation of the
parameters using quasi-maximum likelihood estimates for the
auto-regressive and moving average parameters, as well as how to
estimate the driving Lévy process.

1 Introduction

In many applications an observer (scientist, engineer, analyst) is confronted
with series of data originating from one or more physical variables of
interest over time. Thus, he or she has an observed (multivariate) time
series and will often be interested either in removing (measurement) noise
to extract the signal more clearly or in modeling the observed process,
including its random components.

In both situations stochastic models may very well be appropriate. This is
clear when one is mainly interested in removing noise; but it also is very
often appropriate, when the intention is to model the observed value, to
enrich a physical model by a random component to capture fluctuations and
shortcomings of the physical model. The driving stochastic process (the
“noise”) may have interest on its own (as is the case with economic

Institute of Mathematical Finance, Ulm University, Helmholtzstraße 18, D-89069 Ulm, Germany.
Email: robert.stelzer@uni-ulm.de, http://www.uni-ulm.de/mawi/finmath
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models), or it may need to be modeled well to extract the interesting
information as well as possible (e.g., as is common practice in
telecommunication links).

The easiest way to obtain a model with randomness for the variables of
interest would be to assume that all observed values are independent and
identically distributed (iid) random variables or that they follow a physical
model plus iid noise. However, in most series observed consecutive values
are heavily dependent, and thus more sophisticated models are needed. A
flexible but at the same time very tractable class of models is given by
linear random processes. In the discrete time setting these models are well
known as autoregressive moving average (ARMA) processes, and they are
given in terms of a general order linear difference equation where an iid
noisy input sequence introduces all randomness. The latter is also referred
to as linear filtering of a white noise.

In many situations it is more appropriate to specify a model in continuous
time rather than in discrete time. These include situations involving
high-frequency data, irregularly spaced data, or missing observations, or
where estimation and inference at various frequencies is to be carried out.
Moreover, many physical models are formulated in continuous time,
making such an approach more natural.

In the following we consider linear random processes in continuous time,
referred to as continuous time autoregressive moving average (CARMA)
processes. Intuitively, they are given as the solution to a higher-order
system of linear differential equations with a stochastic process as the input,
which can be seen as linearly filtering the random input.

One important question is which random input to take in the continuous
time set-up. Clearly, the random process should correspond in some sense
to the idea of white noise. Understanding the latter in the strict sense means
using independent increments; in the weak sense it means uncorrelated
increments, and so the variance has to be finite. Recall that for random
variables uncorrelatedness is equivalent to independence only if the random
variables are Gaussian, i.e., they have a normal distribution. A linear
random process driven by Gaussian white noise has again Gaussian
distributions. However, in many situations it is not appropriate to assume
Gaussianity of the variables of interest, since the observed time series often
exhibit features like skewness or heavy tails (i.e., very high or low values
are far more likely to occur than in the Gaussian setting), which contradict
the Gaussian assumption. Demanding uncorrelated but not necessarily
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independent increments does not lead to a nice class of processes nor to
nice theoretical results.

Hence, a good modeling strategy where the resulting process is reasonably
tractable and the driving process’s probability distribution is allowed to
have “fat tails” is to demand that the random input must have independent
as well as stationary increments; i.e., increments over time intervals of the
same length have the same distribution. They then have a time homogeneity
feature and resemble the iid noise of the discrete time set-up. The resulting
class of possible driving processes are the so-called Lévy processes, which
have been studied in detail and form a both highly versatile and highly
tractable family. An interesting feature is that linear processes driven by
general Lévy processes may exhibit jumps and thus allow the modeling of
abrupt changes, whereas Gaussian linear processes have continuous sample
paths.

In the remainder of this paper we proceed as follows. First, we introduce
Lévy processes in detail. Thereafter, we give a proper definition of
CARMA processes, discuss their relation to linear filtering via a stochastic
Fourier (spectral) representation, and summarize central properties of
CARMA processes. Next, we briefly explain the equivalence to linear state
space models and the relation to stochastic control and signal processing.
Finally, we discuss the statistical estimation of the parameters and the
underlying Lévy process and conclude with some additional remarks.

Throughout we will focus on developing the main ideas for CARMA
processes. For more mathematical details as well as comprehensive
references we refer the interested reader to the original literature, especially
the works [2], [8–10], [15–17], [12], [13], [29] and [32]. For a historic
perspective the monograph [31] may be interesting as well as [19], which is
the first paper where Gaussian CARMA processes appeared under the name
of Gaussian processes with rational spectral density.

2 Lévy processes

A Lévy process L = (Lt)t∈R+ is a stochastic process with independent and
stationary increments. In the following we consider only Lévy processes
taking values in them-dimensional vector space Rm (with R the real
numbers andm some positive integer). Note that a stochastic process
(Xt)t∈R+ can be seen either as a family of random variables indexed by the
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positive real numbers R+ or as a random function mapping the positive real
numbers to Rm. More precisely we have the following definition:

Definition 2.1. An Rm-valued stochastic process L = (Lt)t∈R+ is called
Lévy process if

L0 = 0 a.s.,

Lt2 − Lt1 ,Lt3 − Lt2 ,. . . , Ltn − Ltn−1 are independent for all n ∈ N and
t1, t2, . . . , tn ∈ R+ with 0 ≤ t1 < t1 < . . . < tn,

Lt+h − Lt
D
= Ls+h − Ls for all s, t, h ∈ R+ (“D

=” denoting equality in
distribution),

L is continuous in probability, i.e. for all s ∈ R+ we have Lt − Ls
P→ 0

as t→ s.

It can be shown (cf. [? ] for a detailed proof) that the class of Lévy
processes can be characterized fully at the level of “characteristic
functions,” which we now introduce. Let < ·, · > indicate the natural inner
product in Rm and X is an Rm-valued random variable; then its
characteristic function is defined as ψX(u) = E

(
ei<u,X>

)
. The

characteristic function of a Lévy process can always be represented in the
Lévy-Khintchine form

E
(
ei〈u,Lt〉

)
= exp{tψL(u)}, ∀ t ≥ 0, u ∈ Rm, (2.1)

with

ψL(u) = i〈γ,u〉−
1

2
〈u, ΣGu〉+

∫
Rm

(ei〈u,x〉 − 1− i〈u, x〉1[0,1](‖x‖)ν(dx),

(2.2)

where γ ∈ Rm, ΣG is anm×m positive semi-definite matrix and ν is a
measure on Rm that satisfies ν({0}) = 0 and

∫
Rm

(‖x‖2 ∧ 1)ν(dx) <∞. The

measure ν is referred to as the Lévy measure of L, and ‖x‖2 ∧ 1 is short for
min{‖x‖2, 1}. Finally, 1A(x) generically denotes the indicator function of a
set A, i.e., the function that is one if x is an element of A and zero
otherwise. Together (γ, ΣG, ν) are referred to as the characteristic
triplet of L.
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Regarding the paths of a Lévy process, i.e., the “curve of L as a function of
time t,” it can be shown that without loss of generality, a Lévy process may
be assumed to be right continuous and have left limits.

It should be noted that many well known stochastic processes are Lévy
processes. Examples are Brownian motion, also referred to as the Wiener
process or “Gaussian white noise”; the Poisson process, which has jumps of
size one and remains constant in between the jumps, which occur after iid
exponentially distributed waiting times; and α-stable Lévy motions,
sometimes called Lévy flights. Compound Poisson processes are Poisson
processes where the fixed jump size one is replaced by random iid jump
sizes independent of the interarrival times of the jumps. It can be shown
that all Lévy processes arise as limits of such compound Poisson processes.

A better understanding of what Lévy processes really are is provided by the
Lévy-Itô decomposition of their paths. It states that a Lévy process is the
sum of the deterministic linear function γt, a Brownian motion with
covariance matrix ΣG, the sum of the big jumps that form a compound
Poisson process, and the compensated sum of the small jumps (i.e., the sum
of the small jumps minus their expected value). The quantity ν(A) gives
for any measurable set A ⊂ Rm the expected number of jumps with size in
A occurring in a time interval of length one. In Figure 1 a univariate Lévy
process, which is the sum of the linear function t, in this case with γ = 2, a
standard Brownian motion, with ΣG = 1, and a Poisson process, with
ν({1}) = 1, ν(R\{1}) = 0 is depicted together with its individual
components.

Whenever
∫
Rm(‖x‖∧ 1)ν(dx) <∞, we can simply replace the

compensated sum of small jumps with the sum of the small jumps,
adjusting also the slope of the deterministic component. We have actually
already done this in Figure 1 where the resulting slope of the deterministic
function is γ−

∫
R xν(dx) = 1. If ν(R) <∞; we have finitely many jumps

in any bounded time interval, and the jumps form actually a compound
Poisson process. Otherwise, we have infinitely, but countably many jumps
in any bounded time interval. The reason we have in general a component
referred to as “the compensated sum of the jumps” (i.e., it results from a
certain limiting procedure) is that in general the jumps are not summable.
This is equivalent to the fact that the paths have infinite variation, like
Brownian motion. Infinite variation intuitively means that the curve
described by the stochastic process over finite time intervals has an infinite
length. Clearly, this means that the fluctuations of the process over small
time intervals are rather vivid.
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Figure 1. A Lévy process and its components: The complete Lévy process is depicted in the lower right display. In
the upper row the deterministic drift component is depicted on the left and the standard Brownian motion
component on the right. The left display in the middle row shows the standard (rate one) Poisson component and
the right one the Brownian motion and the deterministic component added together. In the last row on the left the
Brownian component plus the Poisson jumps are depicted.
Note that the scaling of the y-axis is different in the individual plots.
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Figure 2. Simulation of a Normal Inverse Gaussian (NIG) Lévy process.

In Figures 2 and 3 you can see simulations of different pure jump Lévy
processes; i.e., in these cases γ = 0 and Σ = 0. So there is neither a
deterministic drift nor a Brownian motion present. All these processes have
infinite activity, i.e., infinitely many jumps in any time interval. Figure 2
depicts a so-called normal inverse Gaussian Lévy process which has
heavier tails than a Brownian motion, but still is rather tame, because it has
finite moments of all orders, i.e., E(|Lt|r) <∞ for all t, r ∈ R+, and also
some exponential moments. In contrast to this the stable processes of
Figure 3 have very heavy tails, because they do not have a finite variance
and the 0.5-stable process does not even have a finite mean. While the NIG
and 1.5-stable processes have infinite variation, the small jumps of the
0.5-stable Lévy process are summable.

Most of the time we will work with Lévy processes defined on the whole
real line, i.e., indexed by R not R+. They are obtained by taking two
independent copies of a Lévy process and reflecting one copy at the origin.

For detailed expositions on Lévy processes we refer to [1] or [6].
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Figure 3. Simulations of stable Lévy processes. A 1.5-stable Lévy process is
depicted in the upper row and a 0.5-stable in the lower one.
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On the intuitive level one wants to be able to interpret a d-dimensional
CARMA(p, q) process Y as the stationary solution to the p-th order linear
differential equation

P(D)Yt = (Dp +A1D
p−1 + . . .+Ap)Yt (3.1)

= (B0D
q + B1D

q−1 + . . .+ Bq)DLt = Q(D)DLt, (3.2)

where the driving input L is anm-dimensional Lévy process, D denotes
differentiation with respect to t, and the coefficients A1, . . . , Ap are d× d
matrices and B0, . . . , Bq are d×m matrices. The polynomials
P(z) = zp +A1z

p−1 + . . .+Ap and Q(z) = B0z
q + B1z

q−1 + . . .+ Bq
with z ∈ C are referred to as the auto-regressive and the moving average
polynomial, respectively. Finally, p, q ∈ N are the auto-regressive and
moving average order.

However, the paths of non-deterministic Lévy processes are not
differentiable, and so the above equation cannot directly provide a rigorous
mathematical definition. Let us briefly consider the case (p, q) = (1, 0), in
which case the resulting process is called an Ornstein-Uhlenbeck (OU)
process. In the univariate case it is given by the differential equation

DYt = aYt +DLt

where a is a real number. So what we basically want is that the change of Y
over an infinitesimal time interval is a times the current value of the process
times the “length of the infinitesimal time interval” plus the change of the
Lévy process over the infinitesimal time interval. Rephrasing this idea in
the precise language of stochastic differential equations we obtain

dYt = aYtdt+ dLt.

Using the theory of stochastic differential equations (SDEs), we can easily
see that this SDE has a unique solution given by

Yt = e
atY0 + e

at

∫ t
0

e−asdLs.

For general orders (p, q) one could to some extent use similar reasoning to
arrive at a precise definition of CARMA processes. However, we shall take
a more elegant route. First note that the differential operators on the
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auto-regressive side of (3.1) act like integration operators on the moving
average side. Hence, they offset the differential operators of the moving
average side acting on the Lévy process. Since Lévy processes are not
differentiable, we effectively have to integrate at least as often as we
differentiate to be able to make sense of (3.1). Hence, a necessary condition
ensuring the proper existence of CARMA processes is p > q.

In order to obtain a rigorous definition of CARMA processes our strategy
here shall be to switch from the time domain to the frequency domain,
where the main tool is the following spectral representation of a Lévy
process. Here and in the following we denote by A∗ for a matrix (or vector)
A the Hermitian, i.e., the complex conjugate transposed matrix.

Theorem 3.1 ([29]). Let (Lt)t∈R be a square integrablem-dimensional
Lévy process with mean E[L1] = 0 (which implies E[Lt] = 0 for all t) and
variance E[L1L∗1] = ΣL at t = 1. Then there exists a uniquem-dimensional
random orthogonal measure ΦL with spectral measure FL such that
E[ΦL(∆)] = 0 for any bounded Borel set ∆, FL(dt) = ΣL

2π
dt and

Lt =

∫∞
−∞

eiµt − 1

iµ
ΦL(dµ), t ∈ R.

The random measure ΦL is uniquely determined by

ΦL([a, b)) =

∞∫
−∞

e−iµa − e−iµb

2πiµ
dLµ (3.3)

for all −∞ < a < b <∞.

The random orthogonal measure ΦL can intuitively be thought of as the
“Fourier transform” of the Lévy process. If Lt is a Brownian motion, then
ΦL([0, t)) is again a Brownian motion. For general Lévy processes rather
little can be said about the properties of ΦL. For example, it is known that
ΦL has second-order stationary and uncorrelated increments, but the
increments are neither independent nor stationary in a strict sense; see [27].

In the spectral domain we can now interpret differentiation (and integration)
as linear filtering, noting that a formal interchange of differentiation and
integration gives “DLt =

∫∞
−∞ eiµtΦL(dµ).” It can be shown that the

resulting process is well defined whenever the linear filter is square
integrable. Thus we obtain as definition for “Y(t) = P(D)−1Q(D)DL(t)”:
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Definition 3.2 (CARMA Process, [29]). Let L = (Lt)t∈R be a two-sided
square integrablem-dimensional Lévy-process with E[L1] = 0 and
E[L1L

∗
1] = ΣL. A d-dimensional Lévy-driven continuous time autoregressive

moving average process (Yt)t∈R of order (p, q) with p, q ∈ N0 and p > q
(CARMA(p, q) process) is defined as

Yt =

∞∫
−∞
eiµtP(iµ)−1Q(iµ)ΦL(dµ), t ∈ R, where (3.4)

P(z) : = Imz
p +A1z

p−1 + ...+Ap,

Q(z) : = B0z
q + B1z

q−1 + ....+ Bq and

ΦL is the Lévy orthogonal random measure of Theorem 3.1. Here
Aj ∈Mm(R), j = 1, ..., p and Bj ∈Md,m(R) are matrices satisfying
Bq 6= 0 and N (P) := {z ∈ C : det(P(z)) = 0} ⊂ R\{0}+ iR (i.e. the
autoregressive polynomial has no zeros on the complex axis).

Referring to the explicit construction of the random orthogonal measure
ΦL, one can easily show that the above defined CARMA processes are
necessarily stationary (in the strict sense, i.e., the distributions are left
unchanged by a time shift). Since by construction any CARMA process in
the sense of Definition 3.2 has a finite variance, it is also weakly stationary,
i.e., the second-order moment structure (the variance and autocovariances)
are left unchanged by time shifts.

Although the definition of CARMA processes via a spectral representation
is elegant and helpful in many theoretical considerations, it is not really
usable in applications, as alone simulating a CARMA process from this
representation would be a tedious and problematic task. However, luckily
we have the following result.

Theorem 3.3 (State Space Representation, [29]). Let the Lévy process L
and P,Q be as before. Define the following coefficient matrices:

βp−j = −
p−j−1∑
i=1

Aiβp−j−i + Bq−j, j = 0, 1, . . . , q,

β1 = . . . = βp−q−1 = 0

β∗ =
(
β∗1, β

∗
2, . . . , β

∗
p

)
and A =

(
0 Id(p−1)

−Ap −Ap−1 . . . −A1

)
.
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Denote by Gt = (G∗1,t, . . . , G
∗
p,t)
∗ a pd-dimensional process and assume

that N (P) := {z ∈ C : det(P(z)) = 0} ⊂ (−∞, 0) + iR - the open right
half of the complex plane. Then

dGt = AGtdt+ βdLt (3.5)

has a unique stationary solution G given by

Gt =

∫ t
−∞ e

A(t−s)βdLs, t ∈ R. (3.6)

It holds that

G1,t =

∫∞
−∞ e

iµtP(iµ)−1Q(iµ)ΦL(dµ) = Yt, t ∈ R.

So the first d-components of G are the CARMA process Y.

A CARMA process satisfying
N (P) := {z ∈ C : det(P(z)) = 0} ⊂ (−∞, 0) + iR is called causal, because
as shown above the value at a time t only depends on the Lévy process up
to time t; it is a function of (Ls)s∈(−∞,t). In other words, a causal CARMA
process is fully determined by values in the past. Whenever the condition
N (P) := {z ∈ C : det(P(z)) = 0} ⊂ (−∞, 0) + iR is not satisfied, Yt also
depends on future values of the Lévy process. In many applications, where
it is clear that all we see today can only be influenced by what happened up
to now, one only considers causal processes as appropriate models.
However, there are also applications where non-causal processes are useful.
For example, if we want to stochastically model the water level in a river
and think of t as describing the location along the river, both the water
levels downstream (in the “future”) and upstream (in the “past”) may
influence the water level at a certain point. Note that in this paper we only
discuss stationary CARMA processes. In some applications (e.g., control) it
is often adequate to consider non-stationary (non-stable) systems. Then the
roots det(P(z)) = 0} in the set (−∞, 0) + iR describe the stable and causal
part of the system, and the remaining roots describe the non-stable part.

Theorem 3.3 allows us to treat a causal CARMA process as a solution to
the stochastic differential equation (3.5), and thus we can apply all the
available results for SDEs. In particular, tasks like simulation of a causal
CARMA process are straightforward and easily implemented. However, the
above result allows us also to get rid of another restriction. So far we could
only define CARMA processes driven by Lévy processes with finite second
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moments, and thus we could so far not have, e.g., CARMA processes
driven by α-stable Lévy processes. However, general theory on
multidimensional Ornstein-Uhlenbeck processes tells us that (3.6) is the
unique stationary solution to (3.5) as soon as the Lévy process has only a
finite logarithmic moment.

Definition 3.4 (Causal CARMA Process, [29]). Let L = (Lt)t∈R be an
m-dimensional Lévy process satisfying∫

‖x‖≥1

ln ‖x‖ν(dx) <∞, (3.7)

p, q ∈ N0 with q < p, and further A1, A2, . . . , Ap,∈Md(R), B0, B1, . . . ,
Bq ∈Md,m(R), where B0 6= 0. Define the matrices A,β and the
polynomial P as in Theorem 3.3 and assume
σ(A) = N (P) ⊆ (−∞, 0) + iR. Then the d-dimensional process

Yt = (Id, 0, . . . , 0)Gt (3.8)

where Gt =
∫t
−∞ eA(t−s)βdLs is the unique stationary solution to

dGt = AGtdt+ βdLt is called causal CARMA(p, q) process.

G is referred to as the state space representation.

A natural question is clearly whether one can also extend the definition of
CARMA processes via the spectral representation to the case with infinite
variance. For so-called regularly varying Lévy processes with finite mean,
and thus especially for α-stable Lévy processes with α ∈ (1, 2), a result
like Theorem 3.1 has been established in [27]. However, the non-finite
variance case is distinctly different, as a limit of integrals has to be taken
and the random orthogonal measure is replaced by an object that is –
strictly speaking – not even a measure any more. In that paper a definition
of CARMA processes with regularly varying Lévy input analogous to
Definition 3.2 has been given, and it has been shown that the resulting
processes coincide with the causal CARMA processes when both
definitions apply. Observe that processes with infinite variance are not only
of academic interest, but that they have important applications, for instance,
in network data modeling. CARMA processes driven by α-stable Lévy
processes have been successfully used to model electricity prices.
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In this section we explain and summarize various properties of (causal)
CARMA processes.

4.1 Second-Order Structure

Recall that for convenience we have assumed that the driving Lévy process
(and thus the CARMA process) has mean zero. Looking at the “defining”
differential equations, it is clear that if E(L1) = µ then the CARMA process
is defined as the one driven by Lt − µt plus A−1

p Bqµ, which is then the
mean of the CARMA process.

Proposition 4.1 ([29]). Let Y be a (causal) CARMA process driven by a
Lévy process L with finite second moments and set ΣL = var(L1).

1. The CARMA process Y has autocovariance function:

cov(Yt+h, Yt) =

∞∫
−∞

eiµh

2π
P(iµ)−1Q(iµ)ΣLQ(iµ)∗(P(iµ)−1)∗ dµ,

with h ∈ R.

2. If Y is a causal CARMA process, its state space representation G has
the following second-order structure:

var(Gt) =

∞∫
0

eAuβΣLβ
∗eA

∗udu

Avar(Gt) + var(Gt)A∗ = −βΣLβ
∗

cov(Gt+h, Gt) = eAhvar(Gt), h ≥ 0.

Since we are only considering stationary CARMA processes, the moments
above do not depend on t.

Since Y is given by the first d components of G, the second-order structure
of G implies immediately alternative formulae for the second-order
structure of Y. In particular, it shows that the autocovariance function
always decays like a matrix exponential for h→∞.
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4.2 Distribution

Another nice feature is that in principle the distribution of a CARMA
process at fixed times and the higher-dimensional marginal distributions,
e.g., the joint distribution of the process at two (or n) different points in
time, is explicitly known in terms of the characteristic function. The
reasons are that all these distributions are infinitely divisible and that their
Lévy-Khintchine triplet is known in terms of the Lévy-Khintchine triplet of
the driving Lévy process. We state this in detail for the stationary
distribution in the causal case.

Proposition 4.2 ([29]). If L has characteristic triplet (γ, Σ, ν), then the
stationary distribution of the state space representation G of a causal
CARMA process is infinitely divisible with characteristic triplet
(γ∞G , Σ∞G , ν∞G ), where

• γ∞G =

∫∞
0

eAsβγds+

∞∫
0

∫
Rm

eAsβx[1[0,1](‖eAsβx‖) − 1[0,1](‖x‖)]ν(dx)ds,

• Σ∞
G =

∫∞
0

eAsβΣβ∗eA
∗s ds,

• ν∞G (B) =

∫∞
0

∫
Rm

1B(e
Asβx)ν(dx)ds

for all Borel sets B ⊆ Rpd.

In other words

E
(
ei〈u,Gt〉

)
=

exp

i〈γ∞G , u〉− 1

2
〈u, Σ∞

Gu〉+
∫

Rpd

(ei〈u,x〉 − 1− i〈u, x〉1[0,1](‖x‖)ν∞G (dx)

 , (4.1)

for all u ∈ Rpd.

Projection onto the first d coordinates gives the characteristic triplet of the
stationary distribution of Y. It should, however, be noted that typically the
distribution of the CARMA process does not belong to any special family
of distributions even if one starts with especially nice Lévy processes.

4.3 Dependence Structure

An important property of multivariate stochastic processes is how their
future evolution depends on the past. Suppose that one stands at a given
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point in time and disposes of sufficient data at that point to determine the
evolution from that point on, also given knowledge of the input from that
point onwards. A Markov process is a stochastic process for which the
future only depends on the current value and not any more on the past
values (all their information is subsumed in the current value). For a
Markov process it only matters – so to speak – where we are now, not
where we came from. If this characterizing property does not only hold at
all fixed times, but also at certain random times called stopping times, we
speak of a strong Markov process.

Proposition 4.3 ([29]). The state space representation G of a causal
CARMA process is a strong Markov process.

Intuitively it is desirable in many applications that the farther away
observations are in time, the less dependent they should be. Usually, one
even wants that very far away observations should be basically independent.
This idea is mathematically formalized in various concepts of asymptotic
independence often referred to as some form of “mixing.”

A comparably weak result which, however, applies to any CARMA process
is the following.

Proposition 4.4. Any stationary CARMA process is mixing.

Mixing implies ergodicity, i.e., empirically determined moments from the
time series converge to the true moments if more and more data are
collected. So time averages converge to ensemble averages. This is very
important for statistical estimation of CARMA processes, as it implies
typically that estimators are consistent (i.e., the estimators converge to the
correct value when more and more data are collected).

Typically, one also wants to know the errors of estimators, which can be
derived from distributional limit results like asymptotic normality. To
obtain such results, a stronger, more uniform notion of asymptotic
independence is needed, which is called strong mixing. Typically, one can
best establish it for a Markov process.

Proposition 4.5 ([29]). For a causal CARMA process with E(‖L1‖r) <∞
for some r > 0 the state space representation G and the CARMA process Y
are strongly mixing, both with exponentially decaying mixing coefficients.
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4.4 Sample Path Properties

Next we look at the sample path properties of a CARMA process.

Proposition 4.6 ([29]).

The sample paths of a CARMA(p, q) process Y with p > q+ 1 are
(p− q− 1)-times differentiable, and for a causal CARMA process it
holds that

di

dti
Yt = Gi+1,t, i = 1, 2, . . . , p− q− 1.

If p = q+ 1, and the driving Lévy process has a non-zero Lévy
measure ν satisfying ν(B−1

0 (Rd\{0})) 6= 0, then the paths of a CARMA
process exhibit jumps, and the jumps sizes are given by
∆Yt := Yt − Yt− = B0∆Lt.

If the driving Lévy process L is a Brownian motion, then the sample
paths of Y are continuous and (p− q− 1)-times continuously
differentiable, provided p > q+ 1.

For examples of the paths of CARMA processes driven by an NIG Lévy
process see Figure 4.

4.5 Tail behavior

As already stated in the introduction, one may want to move away from
Gaussian models because extreme (i.e., very low and/or high) observations
are far more likely than in a Gaussian distribution. One says that the tails
(of the distribution) are heavier than Gaussian ones. Very often it appears
also reasonable to use models that are “heavy-tailed” in the sense that only
a limited number of moments exist, i.e., E(‖X‖r) exists only for low values
of r. Mathematically it is then convenient to use the concept of regular
variation (see [22] for comprehensive introductions in relation to extreme
value theory). Roughly speaking this means that the tails behave like a
power function when one is far from the center of the distribution. A
random variable X is regularly varying if P(‖X‖ > x) behaves comparably
to x−α for some α > 0 and big values of x. In [22] (see also [23] in the
univariate case) it is shown that under a very mild non-degeneracy
condition a CARMA process driven by a regularly varying Lévy process is

21Te
ch

ni
sc

he
U

ni
ve

rs
itä
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Figure 4. A CARMA(1,0) process driven by an NIG Lévy process having
discontinuous paths is shown in the upper display and a CARMA(2,0) process driven
by the same Lévy process having continuous paths in the lower one.
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again regularly varying with the same index α. Hence, it is straightforward
to construct heavy-tailed CARMA processes when applications call for
such features.

In the univariate case the tail behavior of CARMA processes is also
understood in certain non-Gaussian situations, where one has lighter tails
than regularly varying ones (see [24, 25]).

5 State space models

We have defined the causal CARMA process using a so-called state space
representation, and we have noted that the state space representation G is
made up of the CARMA process Y and its derivatives as long as they exist.
Hence, causal CARMA processes may be viewed as special state space
models driven by Lévy processes. In fact, any state space model can also be
realized as a CARMA process, as will be shown now.

We start with a precise definition of state space models.

Definition 5.1. Let L be anm-dimensional Lévy process and

A ∈MN(R), B ∈MN,m(R), C ∈Md,N(R).

A general (N,d)-dimensional continuous time state space model driven by
L with parameters A,B,C is a solution of

the state equation dXt =AXtdt+ BdLt
and the observation equation Yt =CXt.

X is called the state process and Y the output process.

Note that the state process is N-dimensional, whereas the output process is
d-dimensional.

Sufficient conditions for the existence of a unique causal stationary solution
of the state equation are given by (<(·) indicates the “real part” of a
complex number or function)

<(λν) < 0, λν, ν = 1, . . . ,N, being the eigenvalues of A

and L having finite second moments.
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It can easily be shown by integration that X satisfies

Xt = e
A(t−s)Xs +

∫ t
s

eA(t−u)BdLu.

Likewise, the stationary output process Y satisfies

Yt =

∫ t
−∞Ce

A(t−u)BdLu.

Its spectral density, the Fourier transform of the autocovariance function, is
given by

fY(ω) =
1

2π
C(iω−A)−1BΣLB

T(−iω−AT)−1CT .

From Definition 3.4 it is obvious that a CARMA process is a
(pd, d)-dimensional state space model driven by anm-dimensional Lévy
process. The following theorem states that also the converse is true.

Theorem 5.2 ([32]). The stationary solution Y of the multivariate state
space model (A,B,C,L) is an L-driven CARMA process with
autoregressive polynomial P and moving average polynomial Q if and only
if

C(zIN −A)−1B = P(z)−1Q(z), ∀z ∈ C.

For any (A,B,C) there exist P,Q such that the above equation is satisfied
and vice versa.

In reality we typically do not observe some variables of interest
continuously, but only at a discrete set of points in time. Let us assume that
we sample the process at an equidistant time grid with grid length h > 0
and denote by Y(h)

n := Ynh for n ∈ Z the sampled observations of a state
space process.

It is easy to see that

Y(h)
n = CX(h)

n (5.1)

X(h)
n = eAhX(h)

n +

∫nh
(n−1)h

eA(nh−u)BdLu, (5.2)

which immediately shows that Y(h)
n is the output process of a discrete time

(N,d)-dimensional state space model driven by the N-dimensional iid
noise

(∫nh
(n−1)h

eA(nh−u)BdLu
)
n∈Z

.
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It is well known that any (N,d)-dimensional state space model in discrete
time is an ARMA process. Combining this with Theorem 5.2 tells us that
any equidistantly sampled CARMA process Y(h) is an ARMA process. This
observation will be the basis for estimating CARMA parameters in the next
section, where we will need a considerable refinement of this result.

In many applications the sampling frequency is quite high, i.e., h is very
small. Thus it is important to understand how Y(h) behaves as h→ 0, which
has been investigated in [18].

As we only observe the process Y in a state space model, an important
question is what can be said about the state process X based on the
observations. Hence, we want to reconstruct or “estimate” the latent
process X as well as possible. This procedure is also referred to as filtering.
For Gaussian state space models the easily implementable Kalman filter
(see e.g. [11]) is optimal with respect to both variance and distribution. For
non-Gaussian state space models with finite variance the very same
procedure, now typically called linear filtering, gives an “estimate” of the
latent process, which is the linear “estimate” (in the observations) with the
lowest variance. However, it is typically not the “estimate” with the
minimal variance and not a conditional expectation. Thus, more involved
filtering techniques, such as particle filtering (see e.g. [20]), are better.

State space models, mainly Gaussian ones, are also heavily used in
stochastic control. In both areas one is sometimes dealing with data for
which a Gaussianity assumption is not really appropriate due to
skewedness, excess kurtosis or heavy-tailedness. Clearly, in such situations
Lévy-driven state space models or equivalently CARMA processes should
be appealing. It seems worthwhile to mention that there are two uses of
state space models in control, even though going into the details would be
beyond the scope of this paper. Sometimes one assumes some random input
that is then “controlled” by the state space model, so the the state space
model acts as the controller. In contrast to this, sometimes the output of the
state space model is regarded as the natural output of some system on
which an additional controller is acting to ensure that the output meets
certain requirements.

6 Statistical Estimation

In this section we discuss ways to estimate the parameters of a CARMA
process and its driving Lévy process. First we address the estimation of the
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autoregressive and moving average parameters. Due to parametrization
issues explained later on, we formally do this for Lévy-driven continuous
time state space models, as defined in the previous section. In the univariate
case quasi-maximum likelihood estimation of CARMA processes is
comprehensively studied in [17].

6.1 Quasi-maximum likelihood estimation

We assume that we observe the process Y at discrete, equally spaced times

Y(h)
n := Ynh, n ∈ Z, h > 0.

Furthermore, we define the linear innovations ε(h) by

ε(h)n = Y(h)
n −Pn−1Y(h)

n ,

where Pn−1 denotes the orthogonal projection onto
span
{

Y(h)
ν : −∞ < ν < n

}
, i.e., the linear space spanned by the

observations until time (n− 1)h. From the construction it is immediate that
(ε

(h)
n )n∈Z is a white noise sequence, i.e., it has mean zero, a constant

variance and is uncorrelated.

Theorem 6.1 ([32]). Assume the eigenvalues λ1, . . . , λN of the matrix A
are pairwise distinct and define complex numbers Φ1, Φ2, . . . , ΦN by

1−Φ1z−Φ2z
2 − . . .−ΦNz

N =

N∏
ν=1

[
1− e−λνhz

]
∀ z ∈ C.

Then there exist Θ1, Θ2, . . . , ΘN−1 inMd(C) such that

Y(h)
n −Φ1Y

(h)
n−1 − . . .−ΦNY(h)

n−N = ε(h)n +Θ1ε
(h)
n−1 + . . .+ΘN−1ε

(h)
n−N+1

holds.

Hence, Y(h) is a weak ARMA(N,N− 1) process.

This result suggests that one could estimate simply the ARMA coefficients
of the sampled process and then transfer these estimates to estimates of the
CARMA coefficients. However, to estimate a CARMA process it is not
sufficient to estimate an ARMA process, because not all ARMA processes
can be embedded in a CARMA process. There are ARMA processes that
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cannot arise as equidistantly sampled CARMA processes. The way out is to
carry out the “ARMA estimation” in the CARMA parameter space.

Since we are going to use a quasi-maximum likelihood approach and have
discretely sampled observations, all possible models considered in the
estimation have to be distinguishable based only on the second-order
properties of the sampled process.

Definition 6.2 (Identifiability). A collection of continuous time stochastic
processes (Yϑ,ϑ ∈ Θ) is identifiable if for any ϑ1 6= ϑ2 the two processes
Yϑ1 and Yϑ2 have different spectral densities.

It is h-identifiable, h > 0, if for any ϑ1 6= ϑ2 the two processes Y(h)
ϑ1

and

Y(h)
ϑ2

have different spectral densities.

We assume that our parametrization is given by a compact parameter space
Θ ⊂ Rq with some q ∈ N and a mapping

ψ : Θ 3 ϑ 7→ (Aϑ, Bϑ, Cϑ,Lϑ).

We need to ensure that our parametrization is minimal regarding the
dimensions, since a fixed output process can result from artificially
arbitrarily high-dimensional state space models.

Assumption P1 (Minimality). For all ϑ ∈ Θ the triple (Aϑ, Bϑ, Cϑ) is
minimal in the sense that if

C(zIm −A)−1B = Cϑ(zIN −Aϑ)
−1Bϑ

thenm ≥ N must be true.

Assumption P2 (Eigenvalues). For all ϑ ∈ Θ the eigenvalues of Aϑ are
pairwise distinct and contained in the strip

{z ∈ C : −π/h < =(z) < π/h}.

We want to use a parametrization for the continuous time state space model,
but need to ensure that it is h-identifiable. The following theorem provides
easy-to-check criteria.

Theorem 6.3. Assume that the parameterization
ψ : Θ ⊃ ϑ 7→ (Aϑ, Bϑ, Cϑ,Lϑ) is

identifiable

minimal

and satisfies the eigenvalue condition.
27Te

ch
ni

sc
he

U
ni

ve
rs

itä
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Then the corresponding collection of output processes {Yϑ,ϑ ∈ Θ} is
h-identifiable.

The quasi-maximum likelihood (QML) estimator is now obtained by
pretending the observations were Gaussian, taking the corresponding
likelihood, and maximizing it. More precisely the QML of ϑ based on L
observations yL = (y1, . . . , yL) is

ϑ̂
L
= argmaxϑ∈Θ Lϑ

(
yL
)
,

where Lϑ is the Gaussian likelihood function, which is proportional to(
L∏
n=1

detVϑ,n

)−1/2

exp

{
−
1

2

L∑
n=1

eTϑ,nV
−1
ϑ,neϑ,n

}
with

eϑ,n =yn − Pn−1Y
(h)
ϑ,n

∣∣∣{
Y(h)
ϑ,ν=yν:1≤ν<n

} ,
Vϑ,n =E

[
eϑ,neTϑ,n

∣∣∣Y(h)
ϑ,ν = yν : 1 ≤ ν < n

]
.

So eϑ,n are the linear innovations under the model given by ϑ, and Vϑ,n are
their variances or the one-step prediction errors.

Computing the QML estimator is now a straightforward task utilizing the
Kalman recursions and numerically maximizing the likelihood. However,
since we have not used the true likelihood, it is not clear whether the
resulting estimators are really sensible in the sense that they converge to the
true parameters. Luckily, one can show that the estimators are well behaved.

Theorem 6.4 (Strong consistency). For every sampling interval h > 0, the
QML estimator ϑ̂

L
is strongly consistent, i.e.

ϑ̂
L → ϑ0 a.s. as L→∞,

provided the parametrization is h-identifiable.

However, so far we cannot assess the quality of our estimators by
confidence intervals, etc., which is made possible by the following result.

Theorem 6.5 (Asymptotic normality). Assume that the driving Lévy
process satisfies E||L(1)||4+δ <∞ for some δ > 0. For every sampling
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interval h > 0, the QML estimator ϑ̂
L

is asymptotically normally
distributed, i.e.

√
L
(
ϑ̂
L
− ϑ0

)
D→ N (0,Ω), Ω = J(ϑ0)

−1I(ϑ0)J(ϑ0)
−1,

with

J(ϑ) = − lim
L→∞

2

L

∂2

∂ϑ∂ϑT
lnLϑ

(
yL
)
,

I(ϑ) = lim
L→∞

4

L2
Var

∂

∂ϑ
lnLϑ

(
yL
)
,

provided the parametrization is h-identifiable.

To obtain identifiable parametrizations one uses as in the discrete time case
so-called canonical parametrizations such as the echelon state space form.
Since such parametrizations are typically available for state space models
rather than CARMA processes, one normally estimates state space models
rather than the equivalent CARMA processes.

Let us finally look at one simulation study.

A d-dimensional normal inverse Gaussian (NIG) Lévy process L (see e.g.
[3, 7, 30]) with parameters

δ > 0, κ > 0,β ∈ Rd, ∆ ∈M+
d (R)

is given by a normal mean-variance mixture, i.e.

L1=µ+ V∆β+ V1/2N,

where N is d-dimensionally normally distributed with mean zero and
variance ∆ and independent of

V ∼ IG(δ/κ, δ2)

which follows a so-called inverse Gaussian distribution ([28]).

We consider now a bivariate NIG-driven CARMA process with zero mean
given by the state space form

dXt =

 ϑ1 ϑ2 0

0 0 1

ϑ3 ϑ4 ϑ5

Xtdt+

 ϑ1 ϑ2

ϑ6 ϑ7

ϑ3 + ϑ5ϑ6 ϑ4 + ϑ5ϑ7

dLt,

Yt =

[
1 0 0

0 1 0

]
Xt, ΣL =

[
ϑ8 ϑ9

ϑ9 ϑ10

]
.
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Figure 5. One realization of a bivariate NIG-driven CARMA process (upper two
displays) and the effect of sampling (lower two displays). The linearly interpolated
process over the time interval [600, 650] resulting from sampling at integer times is
shown as the thicker line, whereas the thinner line is the true CARMA process.

The parameters are ϑ1, ϑ2, . . . , ϑ10, and the parametrization is in one of the
canonical identifiable forms.

A simulated path is shown in Figure 5.

We calculated the QML estimates for this bivariate NIG-driven CARMA
process on the basis of observations over the time horizon [0, 2000] at
integer times and repeated this for 350 different simulated paths. The
estimation results are summarized in Table 1. It shows that the sample bias
of the obtained estimators in the simulation study is very small and that the
sample standard deviation is close to the standard deviation predicted by the
asymptotic normality result Theorem 6.5. Actually, the sample standard
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Table 1. Summary of the results of the simulation study on the QML estimation of a
bivariate NIG-driven CARMA process. The second column states the mean of
estimators obtained over 350 simulated paths, the third column the resulting bias,
and the fourth column the standard deviation of the obtained estimators. Finally, the
last column states the standard deviation for the estimators as predicted by the
asymptotic normality result Theorem 6.5.

parameter sample mean sample bias sample estimated
standard deviation standard deviation

ϑ1 -1.0001 0.0001 0.0354 0.0381
ϑ2 -2.0078 0.0078 0.0479 0.0539
ϑ3 1.0051 -0.0051 0.1276 0.1321
ϑ4 -2.0068 0.0068 0.1009 0.1202
ϑ5 -2.9988 -0.0012 0.1587 0.1820
ϑ6 1.0255 -0.0255 0.1285 0.1382
ϑ7 2.0023 -0.0023 0.0987 0.1061
ϑ8 0.4723 -0.0028 0.0457 0.0517
ϑ9 -0.1654 0.0032 0.0306 0.0346
ϑ10 0.3732 0.0024 0.0286 0.0378

deviation is always smaller, which is nice as it implies that the standard
deviation predicted by the asymptotic normality result Theorem 6.5 is a
conservative estimate.

6.2 Statistical inference for the driving Lévy process

The above quasi-maximum likelihood approach only allows one to estimate
the autoregressive and moving average parameters and the variance of the
driving Lévy process. However, typically we want to estimate many more
parameters of the driving Lévy process or even first need to get an idea
which family the driving Lévy process may belong to. To this end, one can
reconstruct from the CARMA process the driving Lévy process. Typically,
the CARMA process is only observed at a discrete set of times, and then the
best we can do is to get approximations of the increments of the Lévy
process. One can then treat the approximate increments as if they were the
true ones of the Lévy process. “Looking” at them, one should be able to
choose appropriate parametric families. By using the approximate
increments as one would use the true ones (in maximum likelihood or
method of moment-based estimation procedures), one can do parametric
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inference for the Lévy process. The construction of the approximate
increments and their use in estimation procedures have been studied in
detail in [14], where it is shown in particular that the estimators are good in
the sense that they are consistent and asymptotically normal under
reasonable assumptions when taking appropriate limits.

It should be noted that the idea to reconstruct the Lévy process can already
be found in [10] or [17]. In the following we illustrate this approach for a
univariate Ornstein-Uhlenbeck, i.e., a CARMA(1,0) process based on [16],
from which all examples and plots are taken.

Recall that an Ornstein-Uhlenbeck (OU) process is the unique strictly
stationary solution to

dYt = aYtdt+ dLt. (6.1)

where (Lt)t∈R is a Lévy process with E(ln(max(|L1|, 1))) <∞ and
autoregressive parameter a < 0. The solution of the stochastic differential
equation is given explicitly by

Yt = e
a(t−s)Ys +

t∫
s

ea(t−u)dLu. (6.2)

If the OU process is observed continuously on [0, T ], then the integrated
form of (6.1) immediately gives

Lt = Yt − Y0 − a

∫ t
0

Ysds.

The increments of the driving Lévy process ∆L(h)n on the intervals
((n− 1)h,nh] with n ∈ N can be represented as

∆L(h)n := Lnh − L(n−1)h = Ynh − Y(n−1)h − a

∫nh
(n−1)h

Yudu. (6.3)

What we want is to approximately reconstruct the sequence ∆L(h) of
increments over intervals of length h from observations of the CARMA
process made over a finer equidistant grid. To this end one simply
approximates the integral

∫nh
(n−1)h

Yudu by some numerical integration
scheme needing only the values of the process on this finer grid. Since the
approximations of ∆L(h) become thus closer and closer to the true
increment as the numerical integration scheme becomes more exact, in [14]
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Table 2. Estimated parameters of the standardised driving Lévy process based on
100 paths on [0, 5000] of the Gamma-driven OU process.

h Parameter Sample mean Sample standard
of estimator deviation of estimator

0.01 γ 2.0039 0.0314
0.1 γ 2.0043 0.0340
1 γ 1.9967 0.0539

the authors derive their asymptotic results when both the observation
interval and the observation frequency go to infinity. Note that in practice
one does not know a, so one has to estimate it first, which could, e.g., be
done by the already described quasi-maximum likelihood approach.

Turning to an example, let us consider the OU process given by

dXt = −0.6Xtdt+ dLt, (6.4)

with L being a standardized Gamma process, i.e., Lt having density

fLt(x) =
γ1/2γt

Γ(γt)
xγt−1e−xγ

1/21[0,∞),

and the parameter γ being set to 2.

In [? ], 100 paths of this OU process on the time interval [0, 5000] have
been simulated and then the Lévy increments over time intervals of unit
length have been approximated by sampling the OU process over a grid of
size h.

In Figure 6 the histogram of the Lévy increments distribution from one path
with h = 0.01 is shown, together with the true probability density of L1.

If one further averages over all 100 paths, which is equivalent to looking at
one path over a time horizon 100 times longer, the fit of the histogram to the
true density becomes visually almost perfect (see Figure 7).

Based on the approximate Lévy increments one can now estimate the
parameter γ by maximum likelihood. Table 2 shows summary statistics of
the resulting estimator for different sampling grid sizes h. The data in the
table are based on estimating γ separately for each of the 100 simulated
paths.
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Figure 6. Probability density of the increments of the standardized Lévy process with
γ = 2 and the histogram of the estimated increments from one path of the OU
process, obtained by sampling the process with grid length 0.01.
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Figure 7. Probability density of the increments of the standardized Lévy process with
γ = 2 and the histogram of the estimated increments for all 100 paths of the OU
process, obtained by sampling the process with grid length 0.01. (Source: [? ].)

To conclude, the simulation study illustrates that both the recovery of the
background driving Lévy process and the parametric estimation based on
approximate increments work quite well.

7 Concluding Remarks

Finally, we would like to mention that there are other stochastic models,
such as the so-called ECOGARCH process, where both CARMA processes
and extensions of CARMA processes are important ingredients. One type
of extension is fractionally integrated CARMA (FICARMA) processes (see
[13]). While CARMA processes have an exponentially decaying
autocovariance function and thus always have short memory, FICARMA
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processes exhibit polynomially decaying autocovariance functions and are
thus able to model long-memory phenomena (see [21] for detailed
introductions into the topic of long-range dependence). However, the paths
of FICARMA processes are continuous. The supOU processes (see [4, 5]
and [26]) represent a class of processes that can exhibit long memory and
jumps in the paths and are related to CARMA processes. As noted in [5],
multivariate supOU processes can be straightforwardly extended to obtain
so-called supCARMA processes. Long memory is (believed to be)
encountered in data from many different areas, e.g., finance and
telecommunications. Since it is an asymptotic property, and similar effects
in the autocorrelation function might be caused by structural breaks
(non-stationarity), it is often hardly debated whether there truly is long
memory in a time series. The first scientific study considering long-range
dependence properties was looking at the water level of the river Nile.

From the overview on CARMA processes presented in this paper, it should
not only be clear that they are useful in many applications, but also that
there are still many questions to be addressed in future research. These
include alternatives to the estimators presented here, estimators that work in
the heavy-tailed case when one does not have a finite variance or order
selection, i.e., a theory on how to choose the orders (p, q) of the
autoregressive and moving average polynomial when one fits CARMA
processes to observed time series.
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few years, in what must still be
called his "early career," is just

one measure of his scientific
creativity. Already with his
doctoral thesis, "Multivariate
Continuous Time Stochastic
Volatility Models Driven by a Lévy
Process," Stelzer won
recognition for the quality and
originality of his work.

In 2008 he received the
prestigious prize for
outstanding dissertations
awarded once every two years
by the Probability and Statistics
Group of the Deutsche
Mathematiker Vereinigung.

Add to that the broad set of
topics he has addressed, a deep
level of engagement with
students and collaborators, and
his extensive professional
activities: Stelzer has organized
both tightly focused and broadly
interdisciplinary scientific
meetings, and he has been
editor of the newsletter of the
Bernoulli Society for the last two
years. He is a member of the
Applied Probability Society, the
Institute of Mathematical
Statistics, the DMV, and its
Probability and Statistics Group.
He serves as associate editor for
two journals and as managing
editor for a small book series, as
a referee for papers submitted to
many journals, and as an expert
reviewer for the Alexander von
Humboldt Foundation.

A postdoc at the Technische
Universität München when his
Carl von Linde Junior
Fellowship at the TUM-IAS
began, Robert Stelzer recently
accepted a call — at the age of
30 — to become a professor at
Ulm University, and the director
of its Institute of Mathematical
Finance.

His research interests include
financial mathematics,
multivariate stochastic volatility
models, stochastic processes,
Lévy processes, multivariate
time series analysis, random
matrices, Markov switching
models, and extreme value
theory. One characteristic these
diverse fields have in common
is that advances in theory and
methodology can suggest or
directly provide useful tools for
real-world applications. And
that, according to Stelzer, goes
a long way toward explaining the
greatest challenges he and his
colleagues face, as well as their
most compelling motivations.
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“For us," he says, “there definitely
is a kind of beauty in the
mathematical theory itself, in the
expressive power that enables
researchers to pose and explore
such a wide range of problems. It
can sometimes be hard to develop a
common language for collaboration
with experts from other fields; but
once you have that basis for

communication, the theoretical
work can have a strong practical
impact, which is a great motivation
for the theoretical work. Likewise,
‘simple’ questions arising in
applications may well go beyond
what is understood so far and thus
lead to challenging new research
questions."
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The TUM-IAS, a central institute
of the Technische Universität
München, was created within
the framework of the Excellence
Initiative of Germany’s federal
and state governments.

Technische Universität München
is one of Germany’s leading
universities, with a research and
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engineering sciences, natural
sciences, life sciences,
medicine, and economic
sciences.
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