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16.1 Introduction/Purpose
of the Chapter

The previous two chapters considered the interface of simulation and opti-
mization. This chapter on Markov chain Monte Carlo (MCMC) continues
the study of simulation-related methods, but with a different focus. MCMC
is a powerful means for generating random samples that can be used in com-
puting statistical estimates, numerical integrals, and marginal and joint prob-
abilities. The approach is especially useful in statistical applications where
one is forming an estimate based on a multivariate probability distribution
or density function that would be hopeless to obtain analytically. In particu-
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lar, MCMC provides a means for generating samples from joint distributions
based on easier sampling from conditional distributions. The approach has
had a large impact on the theory and practice of statistical modeling. In fact,
MCMC sometimes applies in problems where it is hard to imagine any other
approach working.

16.2 Vignette/Historical Notes

Markov chain Monte Carlo (MCMC) is a powerful means for generating ran-
dom samples that can be used in computing statistical estimates and in com-
puting marginal and conditional probabilities. MCMC methods rely on a
dependent (Markov) sequence with a limiting distribution corresponding to a
distribution interest.1

Markov chain Monte Carlo (MCMC) is a powerful means for generating
random samples that can be used in computing statistical estimates and in
computing marginal and conditional probabilities.

Although MCMC has general applicability, one area where MCMC has
had a revolutionary impact is Bayesian analysis. MCMC has greatly expanded
the range of problems for which Bayesian methods can be applied.

E[f(X)] = f(x)p(x) dx,(16.1)

where the integral is over the domain for X. The density p(x) is sometimes
called the target density. More generally, the target density (distribution) rep-
resents the distribution for the random variables of interest for the analysis.
In some cases, for example, the target will pertain to a subset of the elements
in X (e.g., it may represent the marginal distribution for only the first com-
ponent of X).

16.3 Theory and Applications

16.3.1 GIBBS SAMPLING

Gibbs sampling represents an implementation of the M-H algorithm on an
element-by-element basis for the components in X. The term Gibbs sampling
was introduced by Geman and Geman (1984) in a specific implementation of
a Gibbs distribution for sampling on lattices . The term is now used more
generally (and casually) to refer to the special case where the proposal dis-
tribution is built directly from the density of interest p(0). Gibbs sampling

1The term Marcov Chain is sometimes reserved for use with processes having discrete out-
comes. In general applications of MCMC, the revelant processes may have discrete, continu-
ous, or hybrid outcomes.
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is especially important in Bayesian implementations of the M-H algorithm.
Gibbs sampling is uniquely designed for multivariate problems.

16.3.2 THEORETICAL FOUNDATION FOR GIBBS SAMPLING

While our focus is Gibbs sampling, given the close connection between Gibbs
sampling and the M-H algorithm introduced earlier, the arguments here also
provide some flavor of the basis for M-H, although the detailed arguments are
somewhat different. This relatively informal discussion is a simplified version
of the discussion in Gelfand and Smith (1990) and Robert and Casella (1999,
Sect. 7.1.3).

Example 16.1 Gibbs sampling for a normal distribution

Suppose that XN(M − 5) for some mean vector and covariance ma-
trix S. Note that, the Gibbs sampler may not be the most efficient
method of generating samples from a multivariate normal distribu-
tion. This example serves to illustrate more general principles, where
Gibbs sampling is used to generate samples from non-standard distri-
butions.

E[f(X)] = f(x)p(x) dx(16.2)

A standard result from multivariate normality is that the distribu-
tion of any selection of components within X conditioned on the re-
maining components is also normal (e.g., Mardia, 1979, pp. 62-63).
Specifically, the distribution of the ith component conditioned on the
remaining components provides the sampling distribution.

FIGURE 16.1 shows a histogram of output for a Gibbs sampler based on n = 40.
The histogram is constructed from the terminal output of the chain using 5000 indepen-
dent replications. The histogram closely matches the marginal density, indicating that
the chain output has a distribution close to the desired distribution.
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Table 16.1 Examples of two popular general forms for proposal distributions.

General Form
of Proposal
Distribution

q(w|x) q(|w)

Normal with
covariance matrix Σ

N(x, σ) N(w, Σ)

Uniform of width 2δ
for each component Um(x − δlm, x + δlm) Um(w − δlm, w + δlm)

Although MCMC has general applicability, one area where MCMC has
had a revolutionary impact is Bayesian analysis. MCMC has greatly expanded
the range of problems for which Bayesian methods can be applied.

16.4 Algorithms and Formulae

16.4.1 M-H ALGORITHM FOR ESTIMATING E[F (X)]

Step 0. (Initialization) Choose the length of the .burn-in. period M and
an arbitrary initial state X0. Set k = 0.

Step 1. Generate a candidate point W according to the proposal distri-
bution q(|Xk).

Step 2. Generate a point U from a U(0, 1) distribution. Set Xk + 1 =
WifU = (Xk,W ) from (16.3). Otherwise set Xk + 1 = Xk.

Step 3. Repeat Steps 1 and 2 until XM is available. Terminate .burn-in.
process and proceed to step 4 with Xk = XM .

Step 4. Carry out step 1.

Step 5. Carry out step 2.

Step 6. Repeat steps 4 and 5 until it is possible to compute the ergodic
average of n−M evaluations in (16.2). (Of course, if desired, this average
can be computed recursively without storing all of f(XM +1), f(XM +
2), f(Xn). This ergodic average is the estimate of E[f(X)] under the
target density p().

There are, of course, many ways in which the M-H algorithm can be
implemented. The most obvious variation in implementation is in the choice
of the proposal distribution q(a|b). Although almost any choice of q(a|b) will
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work in the sense that the ergodic average in (16.2) will converge to E[f(X)],
there are clear differences in the rate of convergence depending on the nature
of the problem.

16.4.1.1 Review of Bayesian Framework
One variation is to run many independent chains, each chain terminating at
XM + 1. In this way, E[f(X)] is estimated by forming a sample mean of
independent values f .

To represent a 4 head. This creates independent blocks of iterations,
allowing for the proposal distribution to be adapted at each block to improve
the sampling. Let us present a simple example where the target density is
bivariate.2

While we saw that Gibbs may be considered a special case of M-H, the
techniques have developed largely independently of each other.

pX(x) = pX|Y, Z(x|y, z)pY, Z(y, z) dydz,(16.3)
pY (y) = pY |X, Z(y|x, z)pX, Z(x, z) dxdz,(16.4)
pZ(z) = pZ|X, Y (z|x, y)pX, Y (x, y) dxdy.(16.5)

Note the presence of a full conditional in each of the integrands above. The
full conditionals form the basis for the Markov aspect of the sampling because
the next random variate is generated based on only the most recent condition-
ing.

1. To represent a list internal head. The techniques have developed largely
independently of each other.

2. Recognizing this, we discuss M-H and Gibbs as separate approaches.
3. As with other stochastic search methods, no one approach is to be uni-

versally preferred.

While we saw that Gibbs may be considered a special case of M-H, the
techniques have developed largely independently of each other. Recognizing
this, we discuss M-H and Gibbs as separate approaches.

While we saw that Gibbs may be considered a special case of M-H, the
techniques have developed largely independently of each other.
Recognizing this, we discuss M-H and Gibbs as separate approaches.

2The term Markov chain is sometimes reserved for use with processes having discrete out-
comes. In general applications of MCMC, the relevant processes may have discrete, continu-
ous, or hybrid outcomes. For consistency with standard terminology in the MCMC area, we
follow suit in this chapter in using the term Markov chain under the more general application
to discrete or continuous outcomes.

Gibbs sampling derives its name from the physicist Josiah W. Gibbs, 1839-1903, based
on the connection to Gibbs random fields identified in Geman and Geman (1984).
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As with other stochastic search methods, no one approach.

While we saw that Gibbs may be considered a special case of M-H, the tech-
niques have developed largely independently of each other.

I. While we saw that Gibbs may be considered a special case of M-H, the
techniques have developed largely independently of each other.

A. Recognizing this, we discuss M-H and Gibbs as separate approaches.

1. As with other stochastic search methods, no one approach is to be
universally preferred.
a. To indicate the fourth level of outline list.

II. While we saw that Gibbs may be considered a special case of M-H, the
techniques have developed largely independently of each other.

16.5 Summary

The discussion above summarizes the motivation, theory, implementation,
and connection to Bayesian analysis for MCMC. The focus is on the M-H
and Gibbs sampling versions of MCMC. Many large-scale practical imple-
mentations of MCMC borrow aspects from both M-H and Gibbs sampling.

While we saw that Gibbs may be considered a special case of M-H, the
techniques have developed largely independently of each other. Recogniz-
ing this, we discuss M-H and Gibbs as separate approaches. As with other
stochastic search methods, no one approach is to be universally preferred.
One strong aspect of both M-H and Gibbs is the theory supporting the meth-
ods and guaranteeing convergence under modest conditions.

KEY TERMS
Burn-in Period: The first M iterations in a Markov chain.
Proposal Distribution: sometimes called an instrumental distribution or
a candidate- generating, the proposal distribution may be chosen arbitrarily,
although there may be efficiency advantages to one form over another in some
applications. The proposal distribution satisfies the key condition for density
functions.

EXERCISES
16.1 Discuss why the ergodic average of a given number of samples in typ-

ical applications of the M-H (and other) algorithms will have greater
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variability than a corresponding average of the same number of inde-
pendent samples of f (X). In the demonstration of this point in Example
16.1, verify that the standard deviation for the independent samples case
is 0.0159.

16.2 (a) Based on 50 independent replications of the M-H algorithm in Ex-
ample 16.1 with the uniform proposal distribution depicted in Figure
16.1, test whether the mean of the terminal estimate is statistically in-
distinguishable from the true value of 0.

(b) Repeat the test with a normal proposal distribution but other as-
pects of Example 16.1 unchanged. In particular, assume W|X = x N(x,
I2/12) (note that this proposal distribution has the same mean and vari-
ance as the original uniform distribution).

(c) Finally, do the same test above, but with a U2 (x -212, x + 212)
proposal distribution (see Table 16.1). Comment on the observed dif-
ferences in the performance for the three proposal distributions.

16.3 Suppose X is bivariate normally distributed where the marginal distri-
bution for the two components is N(0, 1). Present the two sampling
distributions, p1(x|Xk2) and p2(x|Xk1), for use in step 1 (and 3) of the
Gibbs sampling algorithm.

ANSWERS
16.3 Let X be the current state value and W be the candidate point. The

candidate point W is accepted with probability (X, W ). This prob-
ability is random as it depends on X and W . For convenience, let
p(x,w) = p(w)q(x)/[p(x)q(w)] (so (x, w) = min{p(x,w), 1} accord-
ing to (16.3)).
(a) After several steps involving the re-expression of the integrals above
(Reader should show these steps), it is found that E[(X, W )] = 2,
p(x,w) = 1, p(x)q(w) dxdw. The result to be proved then follows
in several more steps (reader to show) by invoking the given inequal-
ity p(x) = Cq(x) (Incidentally, the form of M-H where q(w|x)q(w) is
sometimes called the independent M-H sampler.)

16.6 For the bivariate setting here, the general expression in (16.9) simplifies
considerably. In particular, i = 0, I, i = ·, and i, |I = 1. Hence, the
bivariate sampling for the Gibbs sampling procedure.

[You can label and ref the exercises and answers. For example, \ref{exer},
\ref{subexer}, \ref{answer}, \ref{subanswer} produces:
Ex. 16.1, Ex. 16.2.b, Ans. 16.3, Ans. 16.3.a.]
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