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Foreword

Most of us took mathematics courses from mathematicians—Bad Idea!

Mathematicians seemathematics as an area of study in its own right. The
rest of us use mathematics as a precise language for expressing relation-
ships among quantities in the real world, and as a tool for deriving quan-
titative conclusions from these relationships. For that purpose, mathe-
matics courses, as they are taught today, are seldom helpful and are often
downright destructive.

As a student, I promised myself that if I ever became a teacher, I would
never put a student through that kind of teaching. I have spent my life
trying to find direct and transparent ways of seeing reality and trying to
express these insights quantitatively, and I have never knowingly broken
my promise.

With rare exceptions, the mathematics that I have found most useful was
learned in science and engineering classes, onmy own, or from this book.
Street-FightingMathematics is a breath of fresh air. SanjoyMahajan teaches
us, in the most friendly way, tools that work in the real world. Just when
we think that a topic is obvious, he brings us up to another level. My
personal favorite is the approach to theNavier–Stokes equations: so nasty
that I would never even attempt a solution. But he leads us through one,
gleaning gems of insight along the way.

In this little book are insights for every one of us. I have personally adopted
several of the techniques that you will find here. I recommend it highly
to every one of you.

—Carver Mead





Preface

Too much mathematical rigor teaches rigor mortis: the fear of making an
unjustified leap even when it lands on a correct result. Instead of paraly-
sis, have courage—shoot first and ask questions later. Although unwise
as public policy, it is a valuable problem-solving philosophy, and it is the
theme of this book: how to guess answers without a proof or an exact
calculation.

Educated guessing and opportunistic problem solving require a toolbox.
A tool, to paraphraseGeorge Polya, is a trick I use twice. This book builds,
sharpens, and demonstrates tools useful across diverse fields of human
knowledge. The diverse examples help separate the tool—the general
principle—from the particular applications so that you can grasp and
transfer the tool to problems of particular interest to you.

The examples used to teach the tools include guessing integrals without
integrating, refuting a common argument in the media, extracting physi-
cal properties fromnonlinear differential equations, estimatingdrag forces
without solving the Navier–Stokes equations, finding the shortest path
that bisects a triangle, guessing bond angles, and summing infinite series
whose every term is unknown and transcendental.

This book complements works such asHow to Solve It [Polya:1957],Math-
ematics and Plausible Reasoning [Polya:1954-1,Polya:1954-2], and The Art
and Craft of Problem Solving [Zeitz:2007]. They teach how to solve exactly
stated problems exactly, whereas life often hands us partly defined prob-
lems needing only moderately accurate solutions. A calculation accurate
only to a factor of 2may show that a proposed bridgewould never be built
or a circuit could never work. The effort saved by not doing the precise
analysis can be spent inventing promising new designs.

This book grew out of a short course of the same name that I taught for
several years atMIT. The students variedwidely in experience: fromfirst-
year undergraduates to graduate students ready for careers in research
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and teaching. The students also varied widely in specialization: from
physics, mathematics, and management to electrical engineering, com-
puter science, and biology. Despite or because of the diversity, the stu-
dents seemed to benefit from the set of tools and to enjoy the diversity of
illustrations and applications. I wish the same for you.
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Ourfirst street-fighting tool is dimensional analysis or, when abbreviated,
dimensions. To show its diversity of application, the tool is introduced
with an economics example and sharpened on examples fromNewtonian
mechanics and integral calculus.

1.1 Economics: The power of multinational corporations
Critics of globalization oftenmake the following comparison [25] to prove
the excessive power of multinational corporations:

In Nigeria, a relatively economically strong country, the GDP [gross domes-
tic product] is $99 billion. The net worth of Exxon is $119 billion. “When
multinationals have a net worth higher than the GDP of the country in
which they operate, what kind of power relationship arewe talking about?”
asks Laura Morosini.

Before continuing, explore the following question:

What is the most egregious fault in the comparison between Exxon and Nigeria?

The field is competitive, but one fault stands out. It becomes evident after
unpacking the meaning of GDP. A GDP of $99 billion is shorthand for
a monetary flow of $99 billion per year. A year, which is the time for
the earth to travel around the sun, is an astronomical phenomenon that
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has been arbitrarily chosen formeasuring a social phenomenon—namely,
monetary flow.

Suppose instead that economists had chosen the decade as the unit of
time formeasuringGDP. ThenNigeria’sGDP (assuming the flow remains
steady from year to year) would be roughly $1 trillion per decade and
be reported as $1 trillion. Now Nigeria towers over Exxon, whose puny
assets are a mere one-tenth of Nigeria’s GDP. To deduce the opposite
conclusion, suppose the week were the unit of time for measuring GDP.
Nigeria’s GDP becomes $2 billion per week, reported as $2 billion. Now
punyNigeria stands helpless before themighty Exxon, 50-fold larger than
Nigeria.

A valid economic argument cannot reach a conclusion that depends on
the astronomical phenomenon chosen to measure time. The mistake lies
in comparing incomparable quantities. Net worth is an amount: It has
dimensions of money and is typically measured in units of dollars. GDP,
however, is a flow or rate: It has dimensions of money per time and typ-
ical units of dollars per year. (A dimension is general and independent
of the system of measurement, whereas the unit is how that dimension
is measured in a particular system.) Comparing net worth to GDP com-
pares a monetary amount to a monetary flow. Because their dimensions
differ, the comparison is a category mistake [39] and is therefore guaran-
teed to generate nonsense.

Problem 1.1 Units or dimensions?
Aremeters, kilograms, and seconds units or dimensions? What about energy,
charge, power, and force?

A similarly flawed comparison is length per time (speed) versus length:
“I walk 1.5m s−1—much smaller than the Empire State building in New
York, which is 300 miles high.” It is nonsense. To produce the oppo-
site but still nonsense conclusion, measure time in hours: “I walk 5400
m/hr—much larger than the Empire State building, which is 300 miles
high.”

I often see comparisons of corporate and national power similar to our
Nigeria–Exxon example. I once wrote to one author explaining that I
sympathized with his conclusion but that his argument contained a fa-
tal dimensional mistake. He replied that I had made an interesting point
but that the numerical comparison showing the country’s weakness was
stronger as he had written it, so he was leaving it unchanged!
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A dimensionally valid comparison would compare like with like: either
Nigeria’s GDP with Exxon’s revenues, or Exxon’s net worth with Nige-
ria’s net worth. Because net worths of countries are not often tabulated,
whereas corporate revenues are widely available, try comparing Exxon’s
annual revenues with Nigeria’s GDP. By 2006, Exxon had become Exxon
Mobil with annual revenues of roughly $350 billion—almost twice Nige-
ria’s 2006GDP of $200 billion. This valid comparison is stronger than the
flawed one, so retaining the flawed comparison was not even expedient!

That compared quantities must have identical dimensions is a necessary
condition for making valid comparisons, but it is not sufficient. A costly
illustration is the 1999Mars Climate Orbiter (MCO), which crashed into
the surface of Mars rather than slipping into orbit around it. The cause,
according to the Mishap Investigation Board (MIB), was a mismatch be-
tween English and metric units [MarsClimateOrbiter:1999]:

The MCO MIB has determined that the root cause for the loss of the MCO
spacecraft was the failure to use metric units in the coding of a ground
software file, Small Forces, used in trajectory models. Specifically, thruster
performance data in English units instead of metric units was used in the
software application code titled SM_FORCES (small forces). A file called
Angular Momentum Desaturation (AMD) contained the output data from
the SM_FORCES software. The data in the AMD file was required to be
in metric units per existing software interface documentation, and the tra-
jectory modelers assumed the data was provided in metric units per the
requirements.

Make sure to mind your dimensions and units.

Problem 1.2 Finding bad comparisons
Look for everyday comparisons—for example, on the news, in the newspaper,
or on the Internet—that are dimensionally faulty.

1.2 Newtonian mechanics: Free fall
Dimensions are useful not just to debunk incorrect arguments but also to
generate correct ones. To do so, the quantities in a problem need to have
dimensions. As a contrary example showing what not to do, here is how
many calculus textbooks introduce a classic problem in motion:

A ball initially at rest falls from a height of h feet and hits the ground at a
speed of v feet per second. Find v assuming a gravitational acceleration of
g feet per second squared and neglecting air resistance.
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The units such as feet or feet per second are highlighted in boldface be-
cause their inclusion is so frequent as to otherwise escape notice, and
their inclusion creates a significant problem. Because the height is h feet,
the variable h does not contain the units of height: h is therefore dimen-
sionless. (For h to have dimensions, the problem would instead state
simply that the ball falls from a height h; then the dimension of length
would belong to h.) A similar explicit specification of units means that
the variables g and v are also dimensionless. Because g, h, and v are di-
mensionless, any comparison of v with quantities derived from g and h
is a comparison between dimensionless quantities. It is therefore always
dimensionally valid, so dimensional analysis cannot help us guess the
impact speed.

Giving up the valuable tool of dimensions is like fighting with one hand
tied behind our back. Thereby constrained, we must instead solve the
following differential equation with initial conditions:

d2y

dt2
= −g,with y(0) = h and dy/dt = 0 at t = 0, (1.1)

where y(t) is the ball’s height, dy/dt is the ball’s velocity, and g is the
gravitational acceleration.

Problem 1.3 Calculus solution
Use calculus to show that the free-fall differential equation d2y/dt2 = −g

with initial conditions y(0) = h and dy/dt = 0 at t = 0 has the following
solution:

dy

dt
= −gt and y = −

1

2
gt2 + h. (1.2)

Using the solutions for the ball’s position and velocity in, what is the impact
speed?

When y(t) = 0, the ball meets the ground. Thus the impact time t0 is√
2h/g. The impact velocity is −gt0 or −

√
2gh. Therefore the impact

speed (the unsigned velocity) is
√
2gh.

This analysis invites several algebra mistakes: forgetting to take a square
root when solving for t0, or dividing rather than multiplying by g when
finding the impact velocity. Practice—in other words, making and cor-
rectingmanymistakes—reduces their prevalence in simple problems, but
complex problems with many steps remain minefields. We would like
less error-prone methods.
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One robust alternative is the method of dimensional analysis. But this
tool requires that at least one quantity among v, g, and h have dimen-
sions. Otherwise, every candidate impact speed, no matter how absurd,
equates dimensionless quantities and therefore has valid dimensions.

Therefore, let’s restate the free-fall problem so that the quantities retain
their dimensions:

A ball initially at rest falls from a height h and hits the ground at speed v.
Find v assuming a gravitational acceleration g and neglecting air resistance.

The restatement is, first, shorter and crisper than the original phrasing:
A ball initially at rest falls from a height of h feet and hits the ground at a
speed of v feet per second. Find v assuming a gravitational acceleration of
g feet per second squared and neglecting air resistance.

Second, the restatement is more general. It makes no assumption about
the system of units, so it is useful even if meters, cubits, or furlongs are
the unit of length. Most importantly, the restatement gives dimensions to
h, g, and v. Their dimensions will almost uniquely determine the impact
speed—without our needing to solve a differential equation.

The dimensions of height h are simply length or, for short, L. The dimen-
sions of gravitational acceleration g are length per time squared or LT−2,
where T represents the dimension of time. A speed has dimensions of
LT−1, so v is a function of g and hwith dimensions of LT−1.

Problem 1.4 Dimensions of familiar quantities
In terms of the basic dimensions length L, massM, and time T, what are the
dimensions of energy, power, and torque?

What combination of g and h has dimensions of speed?

The combination
√
gh has dimensions of speed.

(LT−2︸ ︷︷ ︸
g

x L︸︷︷︸
h

)1/2 =
√
L2T−2 = LT−1︸ ︷︷ ︸

speed

. (1.3)

Is
√
gh the only combination of g and h with dimensions of speed?

In order to decide whether
√
gh is the only possibility, use constraint

propagation [Stallman:1976]. The strongest constraint is that the com-
bination of g and h, being a speed, should have dimensions of inverse
time (T−1). Because h contains no dimensions of time, it cannot help
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construct T−1. Because g contains T−2, the T−1must come from√g. The
second constraint is that the combination contain L1. The √g already
contributes L1/2, so the missing L1/2 must come from

√
h. The two con-

straints thereby determine uniquely how g and h appear in the impact
speed v.

The exact expression for v is, however, not unique. It could be
√
gh,
√
2gh,

or, in general,
√
gh×dimensionless constant. The idiom ofmultiplication

by a dimensionless constant occurs frequently and deserves a compact
notation akin to the equals sign:

v ∼
√
gh. (1.4)

Including this ∼ notation, we have several species of equality:

∝ equality except perhaps for a factor with dimensions,
∼ equality except perhaps for a factor without dimensions,
≈ equality except perhaps for a factor close to 1.

(1.5)

The exact impact speed is
√
2gh, so the dimensions result

√
gh contains

the entire functional dependence! It lacks only the dimensionless factor√
2, and these factors are often unimportant. In this example, the height

might vary from a few centimeters (a flea hopping) to a few meters (a cat
jumping from a ledge). The factor-of-100 variation in height contributes
a factor-of-10 variation in impact speed. Similarly, the gravitational accel-
eration might vary from 0.27mpss (on the asteroid Ceres) to 25mpss (on
Jupiter). The factor-of-100 variation in g contributes another factor-of-10
variation in impact speed. Much variation in the impact speed, therefore,
comes not from the dimensionless factor

√
2 but rather from the symbolic

factors—which are computed exactly by dimensional analysis.

Furthermore, not calculating the exact answer can be an advantage. Ex-
act answers have all factors and terms, permitting less important infor-
mation, such as the dimensionless factor

√
2, to obscure important infor-

mation such as
√
gh. As William James advised, “The art of being wise

is the art of knowing what to overlook”

Problem 1.5 Vertical throw
You throw a ball directly upward with speed v0. Use dimensional analysis
to estimate how long the ball takes to return to your hand (neglecting air re-
sistance). Then find the exact time by solving the free-fall differential equa-
tion. What dimensionless factor was missing from the dimensional-analysis
result?
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1.3 Guessing integrals
The analysis of free fall (1.2) shows the value of not separating dimen-
sioned quantities from their units. However, what if the quantities are
dimensionless, such as the 5 and x in the following Gaussian integral:∫∞

−∞ e
−5x2 dx ? (1.6)

Alternatively, the dimensions might be unspecified—a common case in
mathematics because it is a universal language. For example, probability
theory uses the Gaussian integral∫x2

x1

e−x
2/2σ2

dx, (1.7)

where x could be height, detector error, or much else. Thermal physics
uses the similar integral ∫

e−
1
2
mv2/kT dv, (1.8)

where v is a molecular speed. Mathematics, as the common language,
studies their common form

∫
e−αx

2 without specifying the dimensions
of α and x. The lack of specificity gives mathematics its power of abstrac-
tion, but it makes using dimensional analysis difficult.

How can dimensional analysis be applied without losing the benefits of mathe-
matical abstraction?

1.4 Summary and further problems
Do not add apples to oranges: Every term in an equation or sum must
have identical dimensions! This restriction is a powerful tool. It helps us
to evaluate integrals without integrating and to predict the solutions of
differential equations. Here are further problems to practice this tool.

Problem 1.6 Integrals using dimensions

Use dimensional analysis to find
∫∞
0

e−ax dx and
∫

dx

x2 + a2
. A useful result

is ∫
dx

x2 + 1
= arctan x+ C. (1.9)
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Problem 1.7 Stefan–Boltzmann law
Blackbody radiation is an electromagnetic phenomenon, so the radiation in-
tensity depends on the speed of light c. It is also a thermal phenomenon, so it
depends on the thermal energy kBT , where T is the object’s temperature and
kB is Boltzmann’s constant. And it is a quantum phenomenon, so it depends
on Planck’s constant h̄. Thus the blackbody-radiation intensity I depends on
c, kBT , and h̄. Use dimensional analysis to show that I ∝ T4 and to find the
constant of proportionality σ. Then look up the missing dimensionless con-
stant. (These results are used in 1.1.)

Problem 1.8 Arcsine integral

Use dimensional analysis to find
∫ √

1− 3x2 dx. A useful result is

∫ √
1− x2 dx =

arcsin x
2

+
x
√
1− x2

2
+ C, (1.10)

Problem 1.9 Related rates
Water is poured into a large inverted cone (with a 90◦
opening angle) at a rate dV/dt = 10miles3 s−1. When
the water depth is h = 5miles, estimate the rate at
which the depth is increasing. Then use calculus to
find the exact rate.
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A correct solutionworks in all cases, including the easy ones. Thismaxim
underlies the second tool—themethod of easy cases. It will help us guess
integrals, deduce volumes, and solve exacting differential equations.

2.1 Gaussian integral revisited
As the first application, let’s revisit the Gaussian integral from Section
1.2, ∫∞

−∞ e
−αx2 dx. (2.1)

Is the integral
√
πα or

√
π/α?

The correct choice must work for all α ≥ 0. At this range’s endpoints
(α = ∞ and α = 0), the integral is easy to evaluate.

What is the integral when α = ∞?

As the first easy case, increase α to ∞. Then −αx2 be-
comes very negative, even when x is tiny. The exponen-
tial of a large negative number is tiny, so the bell curve
narrows to a sliver, and its area shrinks to zero. There-
fore, as α → ∞ the integral shrinks to zero. This result
refutes the option

√
πα, which is infinite when α = ∞; and it supports

the option
√
π/α, which is zero when α = ∞.
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What is the integral when α = 0?

In the α = 0 extreme, the bell curve flattens into a hor-
izontal line with unit height. Its area, integrated over
the infinite range, is infinite. This result refutes the

√
πα

option, which is zero when α = 0; and it supports the√
π/α option, which is infinity when α = 0. Thus the√
πα option fails both easy-cases tests, and the

√
π/α option passes both

easy-cases tests.

If these two optionswere the only options, wewould choose
√
π/α. How-

ever, if a third option were
√
2/α, how could you decide between it and√

π/α ? Both options pass both easy-cases tests; they also have identical
dimensions. The choice looks difficult.

To choose, try a third easy case: α = 1. Then the integral simplifies to∫∞
−∞ e

−x2 dx. (2.2)

This classic integral can be evaluated in closed form by using polar coor-
dinates, but that method also requires a trick with few other applications
(textbooks onmultivariable calculus give the gory details). A less elegant
but more general approach is to evaluate the integral numerically and to
use the approximate value to guess the closed form.

Therefore, replace the smooth curve e−x2 with a curve
having n line segments. This piecewise-linear approx-
imation turns the area into a sum of n trapezoids. As
n approaches infinity, the area of the trapezoids more and more closely
approaches the area under the smooth curve.

n Area
10 2.07326300569564
20 1.77263720482665
30 1.77245385170978
40 1.77245385090552
50 1.77245385090552

The table gives the area under the curve in
the range x = −10 . . . 10, after dividing the
curve into n line segments. The areas set-
tle onto a stable value, and it looks familiar.
It begins with 1.7, which might arise from√
3. However, it continues as 1.77, which is

too large to be
√
3. Fortunately, π is slightly

larger than 3, so the area might be converg-
ing to

√
π.
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Let’s check by comparing the squared area against π:

1.772453850905522 ≈ 3.14159265358980,
π ≈ 3.14159265358979. (2.3)

2.2 Plane geometry: The area of an ellipse
The second application of easy cases is from plane
geometry: the area of an ellipse. This ellipse has
semimajor axis a and semiminor axis b. For its
area A consider the following candidates:

(a) ab2 (b) a2 + b2 (c) a3/b (d) 2ab (e) πab.

What are the merits or drawbacks of each candidate?

The candidateA = ab2 has dimensions of L3, whereas an areamust have
dimensions of L2. Thus ab2 must be wrong.

Problem 2.1 Area by calculus
Use integration to show that A = πab.

Problem 2.2 Inventing a passing candidate
Can you invent a second candidate for the area that has correct dimensions
and passes the a = 0, b = 0, and a = b tests?

Problem 2.3 Generalization
Guess the volume of an ellipsoid with principal radii a, b, and c.

2.3 Solid geometry: The volume of a truncated pyramid
The Gaussian-integral example (Section 2.1) and the ellipse-area example
(Section 2.2) showed easy cases as a method of analysis: for checking
whether formulas are correct. The next level of sophistication is to use
easy cases as a method of synthesis: for constructing formulas.

As an example, take a pyramidwith a square base and
slice a piece from its top using a knife parallel to the
base. This truncated pyramid (called the frustum) has
a square base and square top parallel to the base. Let
h be its vertical height, b be the side length of its base,
and a be the side length of its top.
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What is the volume of the truncated pyramid?

Let’s synthesize the formula for the volume. It is a function of the three
lengths h, a, and b. These lengths split into two kinds: height and base
lengths. For example, flipping the solid on its head interchanges the
meanings of a and b but preserves h; and no simple operation inter-
changes height with a or b. Thus the volume probably has two factors,
each containing a length or lengths of only one kind:

V(h, a, b) = f(h)× g(a, b). (2.4)

Proportional reasoning will determine f; a bit of dimensional reasoning
and a lot of easy-cases reasoning will determine g.

What is f : How should the volume depend on the height?

To find f, use a proportional-reasoning thought exper-
iment. Chop the solid into vertical slivers, each like an
oil-drilling core; then imagine doubling h. This change
doubles the volume of each sliver and therefore doubles
the whole volume V . Thus f ∼ h and V ∝ h:

V = h× g(a, b). (2.5)

What is g : How should the volume depend on a and b?

Because V has dimensions of L3, the function g(a, b) has dimensions of
L2. That constraint is all that dimensional analysis can say. Further con-
straints are needed to synthesize g, and these constraints are provided by
the method of easy cases.

2.3.1 Easy cases

What are the easy cases of a and b?

The easiest case is the extreme case a = 0 (an ordinary pyramid). The
symmetry betweena andb suggests two further easy cases, namelya = b

and the extreme case b = 0. The easy cases are then threefold:
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When a = 0, the solid is an ordinary pyramid, and g is a function only
of the base side length b. Because g has dimensions of L2, the only pos-
sibility for g is g ∼ b2; in addition, V ∝ h; so, V ∼ hb2. When b = 0, the
solid is an upside-down version of the b = 0 pyramid and therefore has
volume V ∼ ha2. When a = b, the solid is a rectangular prism having
volume V = ha2 (or hb2).
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Here is appendix text.

A.1 Sample appendix section
Here is appendix text.
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