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Editor’s Note

Christopher C. Finger
RiskMetrics Group

chris.finger@riskmetrics.com

With this issue, we present our firstCreditMetrics Monitor as The RiskMetrics Group.
Whle it is a first issue in a sense, it is also a last, as we will no longer be publishing
our research inCreditMetrics or RiskMetrics Monitors. Our next research publication
will be the inaugural issue of theRMG Journal. The RMG Journalwill encompass both
market and credit risk research, and continue the mix of short, practical articles with
longer research pieces. While it is likely that articles on credit risk and Credit Metrics
will appear in most issues, we plan to have occassional special issues devoted solely to
these themes.
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The RiskMetrics Group Spins Off from J.P. Morgan

In the fall of 1998, the RiskMetrics Group (RMG) was spun off from J.P. Morgan.
J.P. Morgan and Reuters hold minority shares of RMG. RMG, known as the Risk
Management Products and Research Group while at J.P. Morgan, is responsible for the
creation and development of benchmark risk management products including RiskMetrics,
CreditMetrics, and DataMetrics.

Planned Enhancements for CreditManager’s Next Release

The next release of CreditManager, version 2.5, will be launched this summer. In this
version, we plan to expand the asset type coverage, add risk/return and benchmark
analysis, and continue to work on collecting and providing more credit data to our
clients.
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We describe four methods to approximate the delta-gamma distribution, commonly
used in Value-at-Risk calculations, and evaluate the methods for accuracy and
speed. The best techniques are Partial Monte Carlo and Fourier inversion of the
moment generating function. The Fourier inversion is the best unless the number
of risk factors is very large (1000− 5000 depending on the confidence level of
VaR).

1 Introduction

Non-linear positions, such as options, produce portfolio returns which are frequently
fat-tailed and skewed. Consequently, knowledge of the mean and variance is not enough
to characterize the distribution of returns and measure Value-at-Risk (VaR). In order to
calculate VaR for a non-linear portfolio, we need to obtain a percentile of the distribution
of changes in portfolio value, but in general, it is impossible to obtain a closed form
for the return distribution, and therefore the VaR, of a non-linear portfolio.

There are two main approaches used to calculate VaR in the non-linear case: The first
involves Monte Carlo simulation to obtain a numerical estimate of VaR. This method
is very accurate but can be computationally expensive for large portfolios. The second
approach consists of analytical approximations of the true distribution of changes in the
portfolio value. This approach can provide an approximate but fast parametric solution
to the problem (e.g. , britten99). Hybrid approaches rely on delta-gamma methods to
dramatically reduce the time to calculate VaR by judiciously selecting which random
trials to evaluate explicitly (see ).

In this article, we evaluate four different methods to obtain an analytical delta-gamma
approximation of the distribution of portfolio returns using Johnson transformations (Sec-
tion 3), Cornish-Fisher expansions (Section 4), Fourier methods (Section 5), and partial
Monte-Carlo. Results are presented in Section 6. We conclude in Section 7.

2 The Delta-Gamma Approximation

One of the most popular methods to calculate VaR for a non-linear portfolio is the
delta-gamma method, in which a second order approximation of the change in present
value of the portfolio is used. The coefficients in this approximation are the first and
second order sensitivities of the present value with respect to changes in the underlying
risk factors. When a first order approximation is used, we refer to the method as the
delta approach.
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Let us assume that we haven risk factors denoted byx = x1, x2, . . . , xn, and that their
returns r = dx

x
follow a multivariate normal distribution. Let us further assume that we

have a portfolio whose valueV (x) is a non-linear function of the risk factors.1

Then, using a Taylor series expansion ofV (x), we can write

dV = V (x + dx) − V (x) (1)

≈
n∑

i=1

δiri + 1

2

n∑
i=1

n∑
j=1

0ij rirj , (2)

where

δi = xi

∂V

∂xi

, and 0ij = xixj

∂2V

∂xi∂xj

. (3)

In matrix notation,

dV ≈ d̃V = δ′r + 1

2
r ′0r, (4)

where d̃V is the change in portfolio value under the delta-gamma approximation.2

It is important to keep in mind that our approximation is onlylocally accurate to second
order as illustrated in Fig. 1. If the value of a portfolio is not a smooth and continuous
function of the underlying risk factors, this approximation can provide extremely inaccurate
results.

Note that the distribution of̃dV has a very general shape (Fig. 2). This property makes
it useful in risk management, since it can accommodate a variety of skewed and fat tailed
distributions. On the other hand, the same flexibility makes it impossible to parameterize.3

Now that we have a relatively simple expression for the change in the present value of
our portfolio in terms of the returns on the risk factors, we have to find a way to obtain
the distribution ofd̃V , or at least an accurate way to approximate it.

3 Johnson Transformations

Since it is impossible to obtain an analytical expression for the probability density function
of d̃V , the change in portfolio value under the delta-gamma approximation, we can try to
fit a more tractable function by making the firstn moments of the fitted and delta-gamma

1 Risk factors can be either prices or rates. See for details.
2 Note that these definitions differ from the standard option terminology whereδ = ∂V

∂x
and 0 = ∂2V

∂x2 .
3 In the special case wheren = 1 the distribution of d̃V is an affine transformation of a non-central chi-squared

distribution.
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Figure 1
Call option values with Black-Scholes and delta-gamma approximation

distributions agree. It is important to understand that we are trying to approximate the
distribution of d̃V , which is in turn an approximation to the true distribution ofdV .

We are generally not interested in the entire distribution of̃dV , but only in certain
percentiles of such distribution. Hence, if we can find a monotonic transformation,
f (X), of a random variableX, such thatf (X) is distributed similarly tod̃V , then VaR
can be approximated by:

VaR = f (zα), (5)

where zα is the α-percentile ofX.4

Johnson (see , ) has described a set of such monotonic transformations. The transfor-
mations are:

1. Bounded on one side (lognormal)

f (X) = exp

[
X − γ

δ

]
+ ξ f (X) ≥ ξ, (6)

4 This is true becauseP [f (x) ≤ VaR] = P [x ≤ f −1(VaR)].



RMG Journal, Volume 1 8

0
dV

0
dV

0
dV

0
dV

Figure 2
Examples of the diverse delta-gamma distribution, wherẽdV is the change in portfolio
value under the delta-gamma approximation. The diversity makes the distribution
both powerful and challenging to evaluate.

2. Bounded on both sides

f (X) =
exp

[
X−γ

δ

]
(ξ + λ) + ξ

1 + exp
[

X−γ

δ

] ξ ≤ f (X) ≤ ξ + λ, (7)

3. Unbounded

f (X) = sinh

[
X − γ

δ

]
λ + ξ, (8)

where X ∼ N(0, 1).

Note that these transformations depend on the four parametersγ, δ, ξ, and λ. We can fit
the parameters of any of the transformations in Eqs. 6, 7, and 8 by finding the first
four moments of the transformation,f (X), and matching them to the moments of̃dV

in Eqs. 4.5

5 The use of the Johnson family of distributions to approximate the delta-gamma distribution was first described
in .
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Analytic expressions for the moments of the transformed random variablef (X) can be
found in , . The first four moments of̃dV are:

µ1 = E[d̃V ] = 1

2
tr(06) (9)

µ2 = E[(d̃V − µ1)
2] = δ′6δ + 1

2
tr(06)2 (10)

µ3 = E[(d̃V − µ1)
3] = 3δ′606δ + tr(06)3 (11)

µ4 = E[(d̃V − µ1)
4] = 12δ′6(06)2δ + 3tr(06)4 + 3 µ2

2 (12)

An algorithm to fit a Johnson distribution given the first four moments can be found in
. Once we fit a transformation functionf (X) we can obtain VaR using Eq. 5.

4 Cornish-Fisher Expansions

It is possible to obtain explicit polynomial expansions for standardized percentiles of a
general distribution in terms of its standardized moments and the corresponding percentiles
of the standard normal distribution.6

The basic result behind this kind of expansion is that ifp(x) is a probability density
function with cumulants7 κ1, κ2, ..., then the function

g(x) =
∞∑

i=0

[
∑∞

j=1 εj
(−D)j

j ! ]i

i!
p(x), (13)

will have cumulantsκ1 + ε1, κ2 + ε2, ..., where D is the differentiation operator and
Dj p(x) = dj p(x)/dxj .8

Using Eq. 13 (see ) it is possible to obtain a useful approximate representation of a
distribution with known moments in terms of a known distributionp(x). In the same
way, it is possible to obtain polynomial expressions for the percentile of a distribution
with known moments. One of these expressions is due to Cornish and Fisher (see ) and
can be found in .9

The first four terms of the Cornish-Fisher expansion for theα-percentile of d̃V −µ1√
µ2

are:10

z̃α ≈ zα + 1

6
(zα

2 − 1)ρ3 + 1

24
(zα

3 − 3zα)ρ4 − 1

36
(2zα

3 − 5zα)ρ3
2, (14)

6 The application of the Cornish-Fisher expression to approximate a percentile of the delta-gamma distribution was
first described in .

7 The cumulants of a distribution are closely related to its moments and can be informally thought of as standardized
moments.

8 Note that g(x) may not satisfy the conditiong(x) ≥ 0.
9 In the Cornish-Fisher expansion, the initial distributionp(x) is normal.
10The momentsµi are given by Eqs. 9, 10, 11, and 12.
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where

ρ3 = µ3

µ2
3
2

, (15)

ρ4 = µ4

µ2
2

− 3, (16)

zα is the α-percentile of aN(0, 1) distribution. (17)

Therefore, we can calculate the(1 − α)% VaR as

VaR = z̃α

√
µ2 + µ1. (18)

5 Moment Generating Functions and Fourier Transforms

The moment generating function (mgf) is another way of writing the probability density
function (pdf) of the change in portfolio value,̃dV . For the delta-gamma problem, we
can obtain a closed-form solution for the mgf. This mgf can be inverted to yield the
pdf. The inversion is performed with Fourier transforms.

The moment generating function,M(u), of a random variableV is closely related to the
probability density,f (V )

M(iu) =
∫ ∞

−∞
eiuV f (V )dV, (19)

wherei is
√−1. Given the mgf, we may invert it to find the pdf with an inverse Fourier

transform:

f (V ) =
∫ ∞

−∞
1

2π
e−iuV M(iu)du. (20)

The moment generating function of̃dV (from ) is

M(u) = |I − 2u06|−1/2 exp

[
1

2
(u6δ)′(I − 2u6)−16−1(u6δ)

]
(21)

for a (p × p) 0 matrix andr ∼ Np(0, 6) with 6 a positive definite covariance matrix.
Equation 21 may be cast in a more computationally tractable form by replacing the
determinate with eigenvalues:

exp


u2

2

p∑
j=1

b2
j (1 − 2uλj )−1


 p∏

j=1

(1 − 2uλj )−1/2, (22)

where P is an orthogonal matrix such thatP ′61/2061/2P = diag(λj , j = 1, p), where
the λ’s are the eigenvalues of61/2061/2, and b = P ′(61/2δ).
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With the moment generating function, the pdf is calculated using Eq. 20, and then
integrated to determine the cumulative density function, and therefore VaR. The inversion
(Eq. 20) is evaluated numerically using a Fast Fourier Transform (FFT) which performs
the integral in order11 N ln N , whereN is the (evenly spaced) number of points at which
the pdf of the change in value is calculated. Using FFT’s to numerically approximate
Fourier integrals is discussed in . The integral can be evaluated to relatively high accuracy
with only N = 28 points equally spaced in an integration range of±Nσ 2/10, whereσ 2

is the variance of the delta-gamma distribution is given by Eq. 10. For higher accuracy,
N and the factor of 10 in the integration range may both be increased.

Because of symmetries in the Fourier integral, the moment generating function needs to be
evaluated at onlyN/2 points. SinceN is so small, the only computational bottleneck is in
finding the eigenvalues of61/2061/2. This calculation takes orderM3 operations where
M is the number of risk factors and takes about 3 minutes on an 450 MHz NT desktop
for 500 risk factors.

6 Numerical Results and Discussion

We evaluate the delta-gamma methods by using them to calculate VaR on four test
portfolios. The portfolios are:

1. A three month short put on the S&P 500 three standard deviations out of the money.

2. A three month at the money long put on the S&P 500.

3. A Yen bear spread composed of a three month short put on Yen one and a half
standard deviations out of the money and a three month long put on Yen one standard
deviation out of the money.

4. A delta-hedged Yen put composed of a three month short put on Yen at the money
and a cash hedge equivalent to the Yen-delta of the put.

The pdf’s for d̃V for each portfolio are shown in Fig. 3.12 We see that the delta-gamma
approximation captures the expected features of the true distribution for these portfolios.
For example, in the first portfolio we are short a deep out of the money put, so we
expect to make a small profit with a large probability (note the spike), and lose a large
amount of money with a small probability if the S&P 500 drops by a large amount.
Similarly, in portfolio 4 we see that once we delta-hedged our short put position we
remain short gamma causing the distribution to have a heavy left tail.

11An operation is which is orderN , takes no more thancN basic operations, wherec is a constant. Examples
of basic operations are addition, multiplication, and exponentiation.

12The figures were generated using the output from a 212 point FFT.
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Figure 3
Test portfolios probability distributions of the change in portfolio value under the
delta-gamma approximation, d̃V .

The percentiles ofd̃V as measured by the delta-gamma approximations are shown in
table 1. The full Monte Carlo and delta methods are shown for comparison with the
delta-gamma approximation models.13

The Partial Monte Carlo is a Monte Carlo simulation of the delta-gamma distribution
that is performed by generating deviates with a multivariate normal distribution and then
valuing them using the simple delta-gamma formula, Eq. 4. The Partial Monte Carlo and
FFT are exact in that they converge to the distribution of̃dV . The FFT differs slightly
from the Partial Monte Carlo because the FFT was run with only 128 evaluations of the
moment generating function, while Partial Monte Carlo was run with 10000 simulations.

The only method discussed in the paper that does not appear in the table is the Johnson
method for which it was difficult to fit a distribution for some of the portfolios.14 While
the portfolios were chosen to stress the methods, they are not improbable positions to be
held within a portfolio. We conclude that Johnson is not a robust choice for performing
delta-gamma.

13Note that with the full Monte-Carlo method we obtain the percentiles of the true distribution of changes in the
portfolio, dV .

14The reason for this is the limited set of shapes attainable with the Johnson transformations.
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Table 1
Delta-gamma Percentiles

1% 5% 10% 90% 95% 99%
Monte Carlo -9.08 -5.46 -3.94 2.11 2.5 3.07

Partial Monte Carlo -7.74 -4.96 -3.61 1.97 2.20 2.30
Portfolio 1 FFT -8.06 -5.11 -3.73 1.95 2.18 2.46

Cornish-Fisher -8.04 -5.09 -3.72 1.99 2.26 2.41
Delta -5.17 -3.66 -2.85 2.85 3.66 5.17

Monte Carlo -15282 -11308 -9099 10297 13408 19578
Partial Monte Carlo -15581 -11474 -8923 10041 13247 19171

Portfolio 2 FFT -15508 -11350 -8983 10043 13102 19041
Cornish-Fisher -15482 -11310 -8963 10028 13065 18992

Delta -17237 -12187 -9496 9496 12187 17237
Monte Carlo -1589 -1200 -958 1219 1605 2434

Partial Monte Carlo -1387 -1050 -868 1092 1469 2202
Portfolio 3 FFT -1380 -1058 -859 1111 1471 2202

Cornish-Fisher -1374 -1056 -858 1108 1467 2195
Delta -1784 -1261 -983 983 1261 1784

Monte Carlo -1849 -1061 -757 22.00 51.00 102.00
Partial Monte Carlo -1896 -1063 -777 22.26 49.07 102.23

Portfolio 4 FFT -1859 -1083 -766 27.12 57.92 117.06
Cornish-Fisher -1978 -1109 -765 -34.09 -81.28 -205.78

Delta -142.64 -100.85 -78.58 78.58 100.85 142.64

The Cornish-Fisher expansion gives very good results for all portfolios except portfolio
4, where it gives poor and nonsensical answers, i.e. the first percentile is less than
the fifth. This occurs because the Cornish-Fisher is a polynomial approximation for the
percentiles, and in certain circumstances, it has a maximum in the range of percentiles.
Because the Cornish-Fisher is an extremely fast algorithm, we would recommend it for
a quick look at the delta-gamma values but caution that it may give unacceptable results
in extreme circumstances.

The FFT and Partial Monte Carlo are competitive in that they are both robust and
give relatively fast answers. When compared with the delta approximation and the full
Monte Carlo examples, it is clear that while the delta-gamma method does not give exact
answers, it gives a good approximation and is a marked improvement over the delta
method.

The speed of the delta-gamma methods is their main attraction. The RiskMetrics delta
method requires between one to four evaluations (for numerical derivatives) of an entire
portfolio for typical portfolios in order to determine the deltas, an evaluation of the
covariance matrix, and then an orderN2 matrix multiplication on the deltas and the
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covariance matrix, whereN is the number of factors. The delta-gamma approximations
all require only a few more portfolio evaluations than delta in order to find gamma. The
Cornish-Fisher approximation requires almost no additional computation.

The FFT algorithm requires an orderN3 matrix operation, and a couple hundred evaluations
of the moment generating function which requires orderN calculations. For large
portfolios with many risk factors, theN3 matrix operation is the slowest (which means
the marginal cost of making the FFT approximation very accurate is small) and requires
roughly 3 minutes· (N/500)3 on a 450 MHz NT desktop.

The Partial Monte Carlo is slower than the FFT unless the number of factors is very
large, because the Partial Monte Carlo requires orderNsimN2 operations whereNsim is
the number of simulations required which depends on the confidence level, but is∼ 1000
for 95% VaR and∼ 5, 000 for 99% VaR. The main advantage of Partial Monte Carlo
over the FFT is the Partial Monte Carlo’s relative ease of implementation.

As a final speed comparison, we note that the Monte Carlo takes as long as Partial
Monte Carlo, plus the time to evaluate all of the positionsNsim times which will be the
dominate contribution when the portfolio contains many complex instruments that that
are based on many factors.

7 Conclusions

We conclude that even for the extreme portfolios that we considered, the delta-gamma
approximation is very close to the full Monte Carlo simulations and offers a significant
improvement over the delta approximation. The delta-gamma methods are two-tiered
with regard to speed. The Johnson and Cornish-Fisher methods are fast, but less ac-
curate and occasionally unstable. We do not recommend these methods except for fast
implementations or for quick checks of a more accurate algorithm.

The best techniques are Partial Monte Carlo and Fourier inversion of the moment generating
function. The Fourier inversion is the best choice for speed and accuracy unless the
number of risk factors is very large (1000− 5000 depending on the confidence level of
VaR). These implementations are not significantly more complex than the RiskMetrics
delta method which is now extremely popular, they can still be computed much faster
than full Monte Carlo simulation, and they are integral to hybrid approaches to full
Monte Carlo.
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Risk-return reports are planned for the next version of CreditManager Currently,
it is possible to extract return information, and create these reports in a separate
application.

One of the most common and most natural requests for future releases of the Credit
Manager product is for the facility to compare the current risk outputs with an expected
return measure. While this is planned for future releases, it is possible to perform some
risk-return analysis in the current version. This article describes how a user might obtain
return information using the current software to complement the existing risk outputs.1

1 The Default Database

CreditManager 2.0 uses a flat file Paradox database which contains records of all market
data, reports, obligors, and exposures. After installation is complete, the default database
will be located in the PC file system in a folder in the CreditManager 2.0 directory
called Data2.2

1.1 Creating additional databases

The easiest way to create a new database is to copy an existing database folder, such
as the default Data2 folder. The following screen shot shows the file system in which
resides the new, duplicated database, NewDataBase.

Portfolio Distribution

To compute the MGF for our portfolio distribution, we again rely on the conditional
independence of the individual obligors. LettingV1, V2 . . . VN denote the values of the
individual loans, andEZ the expectation conditional onZ, we have that

EZet ·V = EZ exp[t · (V1 + . . . + VN)] = EZ

(
et ·V1 · . . . · et ·Vn

)
. (1)

Now since theVi are conditionally independent and have the same stand alone distributions,
we may write the right-hand side of Equation 11 as the product of individual moment
generating functions.

1 This article is partly based upon discussions with John Veidis at Fuji Bank, New York.
2 In this case we uses the Paradox database to access detailed information of each of the following: market data,

reports, obligors, and exposures.
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Table 1
Effects of Government Ownership of Capital
(only labor is taxed)

Fraction of capital owned 0 2.5 5 10

Average tax rate 0.1059 0.1054 0.1049 0.1041
Standard deviation of tax rate 0.0074 0.0082 0.0089 0.0105
Average capital stock 0.1059 0.1061 0.1063 0.1066
Standard deviation of capital stock 0.0139 0.0141 0.0143 0.0147
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Table 2
Effects of Government Ownership of Capital
(only labor is taxed)

Fraction of capital owned 0 2.5 5 10

Average tax rate 0.1059 0.1054 0.1049 0.1041
Standard deviation of tax rate 0.0074 0.0082 0.0089 0.0105
Average capital stock 0.1059 0.1061 0.1063 0.1066
Standard deviation of capital stock 0.0139 0.0141 0.0143 0.0147

Extensions of the basic case

The three strong assumptions we used in the previous section were:

• only one market factor drove all of the asset value processes,

• there were only two possible credit states, and

• all of our exposures were identical—that is, exposiure had the same size default
probability, recovery rate, and weight on the market factor.

In this section, we will first present the framework and notation for a more general case,
then discuss how our three earlier methods can be extended into a MonteCarlo setting,
and finally present resultas fro an example portfolio.

REMARK 1: The number of scenarios to be considered does not depend on the number
of exposures. If there were 10 exposures instead of the assumed 5, the only difference
would be that in the PGF’s, the exponent term would be changed from 5 to 10.

Lemma 1 (The General Dcomposition):Suppose there exist:

1. An integerM > 0.

2. Real numberspij ∈ [o, 1] for i = 1, . . . , M and j = 1, . . . , N and

3. Real numbersλi ∈ [0, 1] for i = 1, . . . M

PROBLEM 1: (Sufficient conditions for existence of decompositions)Given a priori
data on default rates and correlations does there exist a solution to the decomposition
problem described in the Lemma?

PROBLEM 2: (Parameterization of admissible decompositions)Assuming admissible
solutions to the decomposition problem described in the Lemma exist, can we obtain an
easily parameterized family of solutions?
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ASSUMPTION 1: The default correlations are such that the matrix of correlations is
positive semidefinite.

Theorem 1 (Sufficient Conditions for Decomposition & Extreme Decomposition I):
Let Assumptions 1 and 2 hold, then...

Conclusion

We have disucssed a number of possibilities for improving upon the standard Monte
Carlo approach used currently in CreditMetrics. All of the possibilites are based on
the observation that given the moves in the market factors that drive our obligors, the
individual obligor credit moves are conditionally independant.
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The BISTRO structure is an active synthetic Collateralized Bond Obligation. Using
Credit-Manager, it is possible to examine worst case losses on the structure’s various
tranches.

Here is some text.

Summary

And in summary, we can determine...

Appendix

Proof of the Lemma

Here we show that if there existλ and pij with the attributes defined in the Lemma,
then theM scenarios, viewed asM mutually exclusive outcomes, produce the desired
default rates.

pjmax ≥ pj − αsusj ≥ Pjmin (A.1)





Using Multiple Databases

Rob Fraser
RiskMetrics Group Europe
rob.fraser@riskmetrics.com

CreditManager 2.0 allows for the use of multiple databases accelerating the obligor
and exposure editors, and improving the organization of portfolio data.

Here is some text.

Citations include Abramskyet al. (1994), Nerode and Shore (1997), and Gentzen (1935).
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The market upheavals of 1998 brought greater attention to market and credit risk
management alike. On the credit side, last year’s events pointed out that as crucial
as monitoring the credit quality of counterparties is the seemingly simple task
of monitoring the amounts actually exposed to these counterparties. Exposure
estimation, while straightforward for traditional credit products, becomes more
complex when the exposure is contingent on a market factor (e.g. an exchange
rate) and, as we will see in this article, more complex still when there is a
dependency between counterparty credit quality and the relevant market factor.

1 Introduction

The market upheavals of 1998 brought greater attention to market and credit risk manage-
ment alike. On the credit side, last year’s events pointed out that as crucial as monitoring
the credit quality of counterparties is the seemingly simple task of monitoring the amounts
actually exposed to these counterparties. Exposure estimation, while straightforward for
traditional credit products, becomes more complex when the exposure is contingent on a
market factor (e.g. an exchange rate) and, as we will see in this article, more complex
still when there is a dependency between counterparty credit quality and the relevant
market factor.

Regulators have explicitly recognized the uncertain future credit exposure on swaps,
forwards, and other derivative contracts. The Basle Capital Accord requires regulatory
capital for current exposure – roughly, the amount which would be lost should the
counterparty default today – plus additional "add-on" capital to account for the potential
future exposure – the cost of replacing a contract some time in the future – due
to moves in the underlying market factor. As to estimating and monitoring exposure,
sophistication among practioners has varied greatly. To address these discrepancies, twelve
large commercial and investment banks formed the Counterparty Risk Management Policy
Group (CRMPG) in January, 1999, and produced a report in June, 1999. Fifth of the
group’s twelve recommendations was that financial intermediaries "should upgrade their
ability to monitor and, as appropriate, set limits for various exposure measures".

The CRMPG report also highlights four issues that complicate the analysis of credit
exposure. The issues read like a laundry list of risk management themes in general.
Liquidity, event, and operational concerns are the first three issues. The fourth is the
typical assumption that the credit quality of the counterparty is independent of the market
factors that underlie the exposure to the counterparty. The report proposes stress tests
to evaluate the impact of relaxing this assumption. We will show in this article that the
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independence assumption is actually utilized in the applications of exposure measures,
and that by examining these applications, it is possible to extend exposure measures in a
natural way. The extension allows us to begin with any assumption about the distribution
of the underlying risk factor, and to account for dependency between credit quality and
market moves without resorting to stress tests.

The remainder of this article is structured as follows: in the Section 2, we define a
number of standard measures of credit exposure and discuss their applications; in Section
3, we develop a framework to extend these measures by considering the dependency
between counterparty credit quality and the underlying market factor; in Section 4, we
present an example exposure calculation using this framework; in Section 5, we discuss
a technique to calibrate the parameters of the model; lastly, we summarize and conclude.

2 Definitions and uses of exposure measures

In this section, we define a number of exposure measures and discuss their applications.
For further details on the definitions and calculations, see Zangari (1997a) and (1997b).

The first distinction between measures is whether they are estimates of current or potential
exposures. The definition ofcurrent exposure, if not its calculation, is straightforward:
the current exposure of a contract is the cost of replacing the contract, should the
counterparty default today. Intuitively, this is just the current mark to market value of
the contract, if the value is positive. If the mark to market value is negative, the current
exposure is zero, since the counterparty has no obligations, and there is no cost to replace
the contract. In practice, as the CRMPG report points out, in illiquid markets or for
large positions, the replacement cost of a contract will likely be greater than its mark
to market value. We will not address this issue here, and will assume that at any time,
the mark to market value of a contract gives an accurate assessment of its replacement
cost.

In this article, we will treat measures ofpotential exposure. For these measures, we
are concerned with the consequences of a counterparty default some time in the future.
Thus, we would like to estimate the replacement cost of the contract, given that the
counterparty defaults at some future date. If we fix the date, then we may treat the
value (and replacement cost) of the contract on that date as a random variable, and
define two basic exposure measures. Theexpected exposureis the expected replacement
cost of the contract in the case of a counterparty default; themaximum exposureis the
worst replacement cost, given some level of confidence, that we might incur should the
counterparty default.

To make these definitions more concrete, and to aid our discussion later, we introduce
some notation. For simplicity, we will assume that only one risk factor underlies our
contract. Suppose we wish to estimate exposure at some future datet . Let Rt denote the
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(random) value of the risk factor at timet , andft denote the probability density function1

for Rt . Let vt (r) be the mark to market value of the contract, andEt(r) = max{0, vt (r)}
be the exposure, at timet given that the risk factor at that time is equal tor. The
expected exposure att is

E[Et(Rt)] =
∫ ∞

0
dr ft (r) · Et(r). (1)

The maximum exposure att , at confidence levelq, is the levelx satisfying

q = P {Et(Rt) < x} =
∫

{r:Et (r)<x}
dr ft (r). (2)

Since expected and maximum exposure refer to a specific date, there are actually entire
profiles of these measures over the life of the contract. The profile of expected exposure,
for example, consists of the measure defined in (1) for everyt between today and the
maturity of the contract. For practical reasons, it is common to aggregate these profiles
into one number. For the expected exposure profile, the aggregate measure is referred to
as average exposure, and is defined as the weighted average of the expected exposure
measures, with weights proportional to the discount factors for eacht . The aggregate
measure for the maximum exposure profile is referred to aspeak exposureand is defined
as the maximum value over the entire maximum exposure profile. We will not concern
ourselves further with these aggregate measures, but point out that the methods introduced
below can easily be applied in the aggregate, as well as in the single horizon case.

Generically, all exposure measures are utilized to facilitate comparisons between traditional
credit products (where the exposure is a fixed quantity) and contracts where the exposure
is contingent on one or more underlying market factors. For this reason, it is common to
see any of the exposure measures defined above referred to asloan equivalent exposures.
The basic idea is that all of the effects of market volatility are embedded in the exposure
measure, so for credit risk management purposes, a contract with a loan equivalent
exposure of 100 can be treated like a loan with a face value of 100.

That the basic premise of loan equivalence is not exactly true is evident in that banks
typically use different exposure measures for different purposes. The CRMPG report2

mentions the emerging practice of credit charges, whereby the credit risk on a swap or
derivative contract is transferred within the institution, and the valuation of the contract
is adjusted via an internal charge for the "cost of credit". In a sense, this practice can
be thought of as the business that originates the contract buying credit protection from
another part of the organization. The cost of this protection, as well as the pricing
impacts it may have on the contract itself, are most often based on notions of expected
default loss, and therefore use expected or average exposure measures. On the other

1 In this article, we will assumeft is known. For details on modeling risk factors for exposure estimation, see
Zangari (1997a) or Jamshidian and Zhu (1997).

2 Section II D, "Valuation and Exposure Management", pages 29-31.
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hand, firm-wide counterparty exposure limits are designed to bound the worst case loss
in the case of default. Thus, it is typical to apply maximum or peak exposure measures
against these limits.
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Vega risk can be a large part of the risk of a portfolio containing options.
Any market participant owning option positions should be able to compute that
risk. Vega risk is analytically easy to “nest” into the standard risk management
framework. The treatment of vega risk in portfolios is, however, often impeded
by the lack of availability of data on option implied volatilities.

1 Introduction

Vega risk can be a large part of the risk of a portfolio containing options. Any market
participant owning option positions should be able to compute that risk. Vega risk is
analytically easy to “nest” into the standard risk management framework. The treatment
of vega risk in portfolios is, however, often impeded by the lack of availability of data on
option implied volatilities. Vega risk is also complicated by the prevalence of volatility
smiles and term structures in most option markets. Volatility smiles, in spite of their
occasionally treacherous effects on option books, are often neglected by risk managers.
This paper provides a guide to incorporating vega risk into a “classical” value-at-risk
(VaR) model. The paper includes a tractable approach to capturing the effects of the
volatility smile and term structure on vega risk and their interaction with other risk
factors. In our discussion, we will present several examples using a high-quality database
of foreign exchange implied volatilities.1

1.1 Definition of vega risk

Option positions are exposed to a range of market risks.Delta and gamma risk are the
exposures of an option position to changes in the prices of the underlying assets.Vega
is the exposure of an option position to changes in the implied volatility of the option:

vega= ∂option value

∂ implied volatility
.

The change in the option value is defined as a partial derivative, that is, it assumes all
other factors determining the option value, such as the current level of the underlying
asset price and the remaining time to maturity, are held constant. Vega is measured in

1 The source of the database is the J.P. Morgan foreign exchange desk. The database includes implied volatilities
for a wide range of currency pairs and maturities, and includes extensive coverage of volatility smiles and is
available from the RiskMetrics Group.
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dollars or other base currency units. Implied volatility is generally measured in percent
per annum. Units of implied volatility are often calledvols, so dollar-yen might have an
implied volatility of 12 percent or “12 vols”. In this document, we will always express
implied volatility as a decimal, so one vol equals 0.01.2
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CreditMetrics Products

Introduction to CreditMetrics TM: A broad overview of the CreditMetrics methodology
and practical applications.

CreditMetrics TM—Technical Document: A comprehensive reference on the CreditMet-
rics methodology. The document begins with an overview and simple examples. Later
chapters include details on parameter estimation, the model’s assumptions, and siumlation
framework.

CreditMetrics r©Monitor: A semiannual publication which discusses a variety of credit
risk management issues, ranging from practical implementations to modeling and statistical
questions.

CreditMetrics data sets: Current market data (foreign exchange rates, yield curves,
and spread curves by industry and rating category), as well as derived data (industry
correlations and transition matrices). Current market data and industry correlations are
updated weekly.

All of the above can be downloaded from the Internet atwww.creditmetrics.com.


