Title of Report

Subtitle

July 15, 2018

AJ McDonald RJ Reynolds
CM McMaster JK Rowlings

FOR OFFICIAL USE ONLY:

May be exempt from public release under the Freedom of Information Act (5 USC 552), exemption number(s) and category:

Exemption and Category
Department of Energy review required before public release.
Reviewing Official
Reviewing Official
Reviewing Official (Name/Organization)
FOUO Date

Date

Guidance Used
Guidance Used (if Applicable)

Title of Report

Subtitle

July 15, 2018

AJ McDonald CM McMaster
RJ Reynolds
JK Rowlings

Prepared for
the U.S. Department of Energy
Under Contract DE-AC05-76RL01830

Pacific Northwest National Laboratory Richland, Washington 99352

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

PACIFIC NORTHWEST NATIONAL LABORATORY operated by
BATTELLE
for the
UNITED STATES DEPARTMENT OF ENERGY
under Contract DE-AC05-76RL01830

Abstract

Here is the abstract. Here is the abstract.

- Itemized List Bullet 1
- ListBullet 2
- List Bullet 3

1. Enumerate List Style
a. Second level
i. Third level
(1) Fourth level
(a) Fifth level
(i) Sixth level

Executive Summary

Here is Executive Summary

$$
\begin{equation*}
f(x)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{n \pi x}{L}+B N_{n} \sin \frac{n \pi x}{L}\right) \tag{1}
\end{equation*}
$$

where $f=$ where statement where tabs should be placed before the variable and on both sides of the equal sign.
$x=$ definition of x
$n=$ definition of n
$a=$ definition of a
$B N=$ definition of $B N$

Acronyms and Abbreviations

CDA Communications Design and Architecture
 PNNL Pacific Northwest National Laboratory

Acknowledgments

Here are acknowledgments.

Contents

Abstract ii
Executive Summary iii
Acronyms and Abbreviations iv
Acknowledgments v
1.0 Introducion 1
1.1 Here is Heading 2 1
1.1.1 Here is Heading 3 1
2.0 This is a test section 4
2.1 This is a test subsection 4
2.1.1 This is a test subsubsection 4
3.0 Extending templates with functions 6
Appendix A Deep Learning Workstation A. 1
A. 1 Appendix subsection A. 1
A.1.1 Appendix subsubsection A. 1
Appendix B Second Appendix B. 1
B. 1 An equation in Appendix B. 1
B. 2 A Table in Appendix B. 1
Distribution Dist-1

Figures

1 Figure caption 5
2 Caption-Fig 8
A. 1 This little fellow likes to eat eucalyptus leaves. Thus, he and his fellow species mem- bers are found in eucalyptus forests. A. 1
Tables
1 Table Caption. 2
2 This is a coppertop table. It is easy to make as you can see in the documentation. 2
3 Sample Table Caption. If a caption stretches to multiple lines, it will wrap below with a hanging indent (as in this example). Tables may have alternating gray bands if it makes scanning information easier. 3
B. 1 Table in Appendix B. 1

1.0 Introducion

Here is a sample section, the highest level heading. Here is a sample section, the highest level heading. Here is a sample section, the highest level heading.

1.1 Here is Heading 2

Here is a sample subsection. Here is a sample subsection. Here is a sample subsection.

1.1.1 Here is Heading 3

Here is a sample subsection. Here is a sample subsection. Here is a sample subsection.

1.1.1.1 This is Heading 4

Here is text for Heading 4.

This is Heading 5
Here is text for Heading 5.

Table 1. Table Caption.

Experiment ${ }^{(b)}$	$\begin{gathered} \boldsymbol{F} \\ \left(\mathrm{cm}^{3} / h r\right) \end{gathered}$	$\begin{gathered} \rho_{b} \\ \left(\mathrm{~g} / \mathrm{cm}^{3}\right) \end{gathered}$	ω	$\begin{gathered} V_{w} \\ (m L) \end{gathered}$	$\begin{gathered} v \\ (c m / h r) \end{gathered}$	$\begin{gathered} t_{o} \\ V_{w} \end{gathered}$	R	$\begin{gathered} K_{d} \\ (m L / g) \end{gathered}$
Sodium orthophosphate	30.37	1.478	0.386	20.89	16.01	11.22	5.54	1.19
Sodium pyrophosphate	41.93	1.44	0.385	20.33	22.18	15.90	7.61	1.76
Sodium tripolyphosphate	40.80	1.460	0.392	21.27	21.22	14.70	5.17	1.12
Calcium	31.41	1.478	0.386	20.89	16.57	11.95	14.14	3.44

(a) $\boldsymbol{F}=$ flow rate; $\rho_{b}=$ bulk density; $\boldsymbol{\omega}=$ average volumetric water content (standard deviation);
$\boldsymbol{V}_{\boldsymbol{w}}=$ average pore volume; $\boldsymbol{v}=$ average pore water velocity; $\boldsymbol{t}_{\boldsymbol{o}}=$ step input; $\boldsymbol{R}=$ retardation factor;
$\boldsymbol{K}_{\boldsymbol{d}}=$ sediment water distribution coefficient based on \boldsymbol{R}.
(b) Columns appeared saturated and had reached a stable water content.

Table 2. This is a coppertop table. It is easy to make as you can see in the documentation.

Experiment ${ }^{(b)}$	$\begin{gathered} F \\ \left(\mathrm{~cm}^{3} / h r\right) \end{gathered}$	$\begin{gathered} \rho_{b} \\ \left(\mathrm{~g} / \mathrm{cm}^{3}\right) \end{gathered}$	ω	$\begin{gathered} V_{w} \\ (m L) \end{gathered}$	$\begin{gathered} v \\ (\mathrm{~cm} / \mathrm{hr}) \end{gathered}$	$\begin{gathered} t_{o} \\ V_{w} \end{gathered}$	R	$\begin{gathered} K_{d} \\ (m L / g) \end{gathered}$
Sodium orthophosphate	30.37	1.478	0.386	20.89	16.01	11.22	5.54	1.19
Sodium pyrophosphate	41.93	1.44	0.385	20.33	22.18	15.90	7.61	1.76
Sodium tripolyphosphate	40.80	1.460	0.392	21.27	21.22	14.70	5.17	1.12
Calcium	31.41	1.478	0.386	20.89	16.57	11.95	14.14	3.44

(a) $\boldsymbol{F}=$ flow rate; $\boldsymbol{\rho}_{b}=$ bulk density; $\boldsymbol{\omega}=$ average volumetric water content (standard deviation);
$\boldsymbol{V}_{\boldsymbol{w}}=$ average pore volume; $\boldsymbol{v}=$ average pore water velocity; $\boldsymbol{t}_{\boldsymbol{o}}=$ step input; $\boldsymbol{R}=$ retardation factor; $\boldsymbol{K}_{\boldsymbol{d}}=$ sediment water distribution coefficient based on \boldsymbol{R}.
(b) Columns appeared saturated and had reached a stable water content.
Table 3.

$$
\begin{aligned}
& \text { Sample Table Caption. If a caption stretches to multiple lines, it will wrap below with } \\
& \text { a hanging indent (as in this example). Tables may have alternating gray bands if it } \\
& \text { makes scanning information easier. }
\end{aligned}
$$

Experiment ${ }^{(b)}$	$\begin{gathered} \boldsymbol{F} \\ \left(\mathrm{cm}^{3} / h r\right) \end{gathered}$	$\begin{gathered} \rho_{b} \\ \left(\mathrm{~g} / \mathrm{cm}^{3}\right) \end{gathered}$	ω	$\begin{gathered} V_{w} \\ (m L) \end{gathered}$	$\begin{gathered} v \\ (c m / h r) \end{gathered}$	$\begin{gathered} t_{o} \\ V_{w} \end{gathered}$	R	$\begin{gathered} K_{d} \\ (m L / g) \end{gathered}$
Sodium orthophosphate	30.37	1.478	0.386	20.89	16.01	11.22	5.54	1.19
Sodium pyrophosphate	41.93	1.44	0.385	20.33	22.18	15.90	7.61	1.76
Sodium tripolyphosphate	40.80	1.460	0.392	21.27	21.22	14.70	5.17	1.12
Calcium	31.41	1.478	0.386	20.89	16.57	11.95	14.14	3.44
(a) $\boldsymbol{F}=$ flow rate; $\rho_{b}=$ bulk density; $\omega=$ average volumetric water content (standard deviation); $\boldsymbol{V}_{\boldsymbol{w}}=$ average pore volume; $\boldsymbol{v}=$ average pore water velocity; $\boldsymbol{t}_{\boldsymbol{o}}=$ step input; $\boldsymbol{R}=$ retardation factor; $\boldsymbol{K}_{\boldsymbol{d}}=$ sediment water distribution coefficient based on \boldsymbol{R}. (b) Columns appeared saturated and had reached a stable water content.								

FOR OFFICIAL USE ONLY

2.0 This is a test section

Here we are testing section heads so that we can see how they format. Here we are testing section heads so that we can see how they format. Here we are testing section heads so that we can see how they format. Here we are testing section heads so that we can see how they format.

2.1 This is a test subsection

Here we are testing section heads so that we can see how they format. Here we are testing section heads so that we can see how they format. Here we are testing section heads so that we can see how they format. Here we are testing section heads so that we can see how they format.

2.1.1 This is a test subsubsection

Here we are testing section heads so that we can see how they format. Here we are testing section heads so that we can see how they format. Here we are testing section heads so that we can see how they format. Here we are testing section heads so that we can see how they format.

2.1.1.1 This is a test paragraph

Here we are testing section heads so that we can see how they format. Here we are testing section heads so that we can see how they format. Here we are testing section heads so that we can see how they format. Here we are testing section heads so that we can see how they format.

This is a test subparagrapn

Here we are testing section heads so that we can see how they format. Here we are testing section heads so that we can see how they format. Here we are testing section heads so that we can see how they format. Here we are testing section heads so that we can see how they format.

PNNL-12345

FOR OFFICIAL USE ONLY

3.0 Extending templates with functions

Although templates provide quite a few features, often you need to extend them with your own functionality. The need to add features isn't uncommon or uncalled for. For example, we've often seen the need to display a date and time in an easy-to-read format. This common request could easily be implemented as part of the template system. This is just one common example, and template systems can be extended in many cases.

Although templates provide quite a few features, often you need to extend them with your own functionality. The need to add features isn't uncommon or uncalled for. For example, we've often seen the need to display a date and time in an easy-to-read format. This common request could easily be implemented as part of the template system. This is just one common example, and template systems can be extended in many cases.

Although templates provide quite a few features, often you need to extend them with your own functionality. The need to add features isn't uncommon or uncalled for. For example, we've often seen the need to display a date and time in an easy-to-read format. This common request could easily be implemented as part of the template system. This is just one common example, and template systems can be extended in many cases.

Although templates provide quite a few features, often you need to extend them with your own functionality. The need to add features isn't uncommon or uncalled for. For example, we've often seen the need to display a date and time in an easy-to-read format. This common request could easily be implemented as part of the template system. This is just one common example, and template systems can be extended in many cases.

Extending templates with functions

Although templates provide quite a few features, often you need to extend them with your own functionality. The need to add features isn't uncommon or uncalled for. For example, we've often seen the need to display a date and time in an easy-to-read format. This common request could easily be implemented as part of the template system. This is just one common example, and template systems can be extended in many cases.

Although templates provide quite a few features, often you need to extend them with your own functionality. The need to add features isn't uncommon or uncalled for. For example, we've often seen the need to display a date and time in an easy-to-read format. This common request could easily be implemented as part of the template system. This is just one common example, and template systems can be extended in many cases.

Although templates provide quite a few features, often you need to extend them with your own functionality. The need to add features isn't uncommon or uncalled for. For example, we've often seen the need to display a date and time in an easy-to-read format. This common request could easily be implemented as part of the template system. This is just one common example, and template systems can be extended in many cases.

Although templates provide quite a few features, often you need to extend them with your own functionality. The need to add features isn't uncommon or uncalled for. For example, we've often seen the need to display a date and time in an easy-to-read format. This common request could easily be implemented as part of the template system. This is just one common example, and template systems can be extended in many cases.

Figure 2. Caption-Fig

A Deep Learning Workstation

The process of setting up a deep-learning workstation is fairly involved. It consists of...

A. 1 Appendix subsection

A.1.1 Appendix subsubsection

Figure A.1. This little fellow likes to eat eucalyptus leaves. Thus, he and his fellow species members are found in eucalyptus forests.

B Second Appendix

B. 1 An equation in Appendix

$$
\begin{equation*}
f(x)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{n \pi x}{L}+B N_{n} \sin \frac{n \pi x}{L}\right) \tag{B.1}
\end{equation*}
$$

where $f=$ where statement where tabs should be placed before the variable and on both sides of the equal sign.
$x=$ definition of x
$n=$ definition of n
$a=$ definition of a
$B N=$ definition of $B N$

B. 2 A Table in Appendix

Table B.1. Table in Appendix

α	β	γ	δ	$\boldsymbol{\nabla}$
1	2	3	4	5

Distribution

No. of
Copies

Client

3 Client Name
Client Organization
Client Address
City, State, Zipcode

Recipient

4 Recipient Organization
Address
City, State, Zipcode
AK Recipient
BK Recipient (3)

Other Recipients

2 Another Recipient Organization
Address
City, State, Zipcode
PA Dirac
ER Schrödinger

3

No. of
Copies

Second Foreign Organization
Second Foreign Name
Second Address
Address line two
Country

Local Distribution

35
Total Number of Local Copies

AK Kelly	Mailstop
BZ Eberly	Mailstop
CX Smith	PDF

Pacific Northwest National Laboratory
ZB Zebra
XC Excellent
CC Charleston PDF

Pacific Northwest National Laboratory

902 Battelle Boulevard

P.O. Box 999

Richland, WA 99352
1-888-375-PNNL (7675)
www.pnnl.gov

