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∫ P

0
dw EπwL

[
∑

nL|[pre,w]

τL

] (1)

As long as RI − KLP > 1
β

ρπ =
β(RI + KLτPav)− 1

β(P + τPav)

and E[τL|post] =
P + τPav

β(RI − KLP)− 1

 (2)
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Shortened Version of Title

Text finishing first page. Text finishing first page. Text finishing first page. Text finishing
first page. Text finishing first page. Text finishing first page. Text finishing first page.

Box 1. Comparative Analysis of Different Classes of Networks

Going beyond the examination of shared topological features across nervous systems, the general-

ized mathematical language of graph theory also offers tools for the comparison of the organization

of brain networks to other classes of network studied by different scientific disciplines.

Many real-world systems operate as some sort of interaction or communication network, including,

for example, social networks, gene regulatory networks, computer networks, and transportation net-

works. Similar to brain networks, many of these real-world networks display an efficient small-world

organization, a pronounced community structure with densely connected modules, as well as the for-

mation of hubs and rich clubs. Going beyond the comparison of networks within the class of nervous

systems, the field of ‘comparative network analysis’ examines commonalities and differences across

a range of network classes.
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Figure 1. Here is the caption.
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Box 2. Comparative Analysis of Different Classes of Networks

Going beyond the examination of shared topological features across nervous systems, the general-

ized mathematical language of graph theory also offers tools for the comparison of the organization

of brain networks to other classes of network studied by different scientific disciplines. Many real-

world systems operate as some sort of interaction or communication network, including, for example,

social networks, gene regulatory networks, computer networks, and transportation networks. Similar

to brain networks, many of these real-world networks display an efficient small-world organization, a

pronounced community structure with densely connected modules, as well as the formation of hubs

and rich clubs. Going beyond the comparison of networks within the class of nervous systems, the

field of ‘comparative network analysis’ examines commonalities and differences across a range of

network classes.

Table 1. Here is the caption.

one two three
four five six

Jargon Samples in margin

One common decision is between working (performing an employer-defined task) and en-
gaging in leisure (activities pursued for oneself). Working leads to external rewards such
as food and money; whereas leisure is supposed to be intrinsically beneficial (otherwiseIntrinsically beneficial:

The characteristic of leisure that we
enjoy most.

one would not want to engage in it). β ∈ [0, ∞) is often used to indicate an important

β ∈ [0, ∞):
inverse temperature or degree of
stochasticity-determinism
parameter.

parameter, the stochasticity-determinism parameter.

Simple code sample

procedure bubbleSort( A : list of sortable items )
n = length(A)
repeat

newn = 0
for i = 1 to n-1 inclusive do

if A[i-1] > A[i] then
swap(A[i-1], A[i])
newn = i

end if
end for
n = newn

until n = 0
end procedure

Algorithm environment

Algorithm 1 A sample in an algorithm environment.

if i ≥ maxval then
i← 0

else
if i + k ≤ maxval then

i← i + k
end if

end if

Network Neuroscience 3
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ITEMIZED LISTS

Roman list:

(i) at high payoffs, subjects work almost continuously.
(ii) at low payoffs, they engage in leisure all at once, in long bouts after working.

(iii) subjects work continuously for the entire price duration, as long as the price is not
very long;

(iv) the duration of leisure bouts is variable.

Numbered list:

1. at high payoffs, subjects work almost continuously, engaging in little leisure inbe-
tween work bouts;

2. at low payoffs, they engage in leisure all at once, in long bouts after working, rather
than distributing the same amount of leisure time into multiple short leisure bouts;

3. subjects work continuously for the entire price duration, as long as the price is not
very long (as shown by an analysis conducted by Y-AB, to be published separately);

4. the duration of leisure bouts is variable.

Bulleted list:

at high payoffs, subjects work almost continuously, engaging in little leisure inbe-
tween work bouts;
at low payoffs, they engage in leisure all at once, in long bouts after working, rather
than distributing the same amount of leisure time into multiple short leisure bouts;
subjects work continuously for the entire price duration, as long as the price is not
very long (as shown by an analysis conducted by Y-AB, to be published separately);
the duration of leisure bouts is variable.

Description list:

High payoffs: at high payoffs, subjects work almost continuously, engaging in little leisure
inbetween work bouts;

Low payoffs: at low payoffs, they engage in leisure all at once, in long bouts after working,
rather than distributing the same amount of leisure time into multiple short leisure
bouts;

Continuous work: subjects work continuously for the entire price duration, as long as the
price is not very long (as shown by an analysis conducted by Y-AB, to be published
separately);

Duration: the duration of leisure bouts is variable.
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SAMPLE CITATIONS

For general information on the correct form for citations using the APA 6 format, see the
following sites: APA 6, In-text citations, The Basics and APA 6, In-text citations

NATBIB CITATION MARK UP

Single citations

Type Results

\citet{jon90} Jones et al. (1990)
\citet[chap. 2]{jon90} Jones et al. (1990, chap. 2)
\citep{jon90} (Jones et al., 1990)
\citep[chap. 2]{jon90} (Jones et al., 1990, chap. 2)
\citep[see][]{jon90} (see Jones et al., 1990)
\citep[see][chap. 2]{jon90} (see Jones et al., 1990, chap. 2)
\citet*{jon90} Jones, Baker, and Williams (1990)
\citep*{jon90} (Jones, Baker, and Williams, 1990)

For example, some citations from the NETNbibsamp.bib database:

citet: Bullmore and Sporns (2009), citep: (Gómez, Jensen, & Arenas, 2009), and citep*:
(de Pasquale et al., 2012)

Multiple citations

Multiple citations may be made by including more than one citation key in the \cite

command argument.

Type Results

\citet{jon90,jam91} Jones et al. (1990); James et al. (1991)
\citep{jon90,jam91} (Jones et al., 1990; James et al. 1991)
\citep{jon90,jon91} (Jones et al., 1990, 1991)
\citep{jon90a,jon90b} (Jones et al., 1990a,b)

For example, multiple citations from the bibsamp.bib database: citet: Hutchison, Wom-
elsdorf, Gati, Everling, and Menon (2013); Nooner et al. (2012), citep: (de Pasquale et al.,
2012; Tagliazucchi, Von Wegner, Morzelewski, Brodbeck, & Laufs, 2012)

As you see, the citations are automatically hyperlinked to their reference in the bibliog-
raphy.
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SAMPLE FIGURES
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Figure 2. (Colour online) Task and key features of the data.
A) Cumulative handling time (CHT) task. Grey bars denote work (depressing a lever), white
gaps show leisure. The subject must accumulate work up to a total period of time called the
price (P) in order to obtain a single reward (black dot) of subjective reward intensity RI. The trial
duration is 25× price (plus 2s each time the price is attained, during which the lever is retracted
so it cannot work; not shown).
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Figure 3. (Colour online) Task and key features of the data.
A) Cumulative handling time (CHT) task. Grey bars denote work (depressing a lever), white gaps show leisure. The subject must
accumulate work up to a total period of time called the price (P) in order to obtain a single reward (black dot) of subjective reward
intensity RI. The trial duration is 25× price (plus 2s each time the price is attained, during which the lever is retracted so it cannot work;
not shown).
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SAMPLE TABLES

Table 2. Time of the Transition Between Phase 1 and Phase 2a

Run Time (min)
l1 260
l2 300
l3 340
h1 270
h2 250
h3 380
r1 370
r2 390
aTable note text here.

Table 3. Sample table taken from [treu03]

POS chip ID X Y RA DEC IAU± δ IAU IAP1± δ IAP1 IAP2 ± δ IAP2 star E Comment
0 2 1 1370.99 57.35a 6.651120 17.131149 21.344±0.006b 2 4.385±0.016 23.528±0.013 0.0 9 -
0 2 2 1476.62 8.03 6.651480 17.129572 21.641±0.005 2 3.141±0.007 22.007±0.004 0.0 9 -
0 2 3 1079.62 28.92 6.652430 17.135000 23.953±0.030 2 4.890±0.023 24.240±0.023 0.0 - -
0 2 4 114.58 21.22 6.655560 17.148020 23.801±0.025 2 5.039±0.026 24.112±0.021 0.0 - -
0 2 5 46.78 19.46 6.655800 17.148932 23.012±0.012 2 3.924±0.012 23.282±0.011 0.0 - -
0 2 6 1441.84 16.16 6.651480 17.130072 24.393±0.045 2 6.099±0.062 25.119±0.049 0.0 - -
0 2 7 205.43 3.96 6.655520 17.146742 24.424±0.032 2 5.028±0.025 24.597±0.027 0.0 - -
0 2 8 1321.63 9.76 6.651950 17.131672 22.189±0.011 2 4.743±0.021 23.298±0.011 0.0 4 edge

Table 2 is published in its entirety in the electronic edition of the Astrophysical Journal.
a Sample footnote for table 2.
b Another sample footnote for table 2.
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Box 3. Tools for comparison of networks

Going beyond the examination of shared topological features across nervous systems, the general-

ized mathematical language of graph theory also offers tools for the comparison of the organization

of brain networks to other classes of network studied by different scientific disciplines.

FromW , we can estimate the variability in the fluctuations of the functional connection between nodes

i and j over time as:

sij =

√√√√ 1
T − L

T−L+1

∑
t=1

(Wij(t)−mij) (3)

where mij =
1

T−L+1 ∑T−L+1
t=1 Wij(t) is the mean dynamic functional connectivity over time.

Many real-world systems operate as some sort of interaction or communication network, including,

for example, social networks, gene regulatory networks, computer networks, and transportation net-

works. Similar to brain networks, many of these real-world networks display an efficient small-world

organization, a pronounced community structure with densely connected modules, as well as the for-

mation of hubs and rich clubs. Going beyond the comparison of networks within the class of nervous

systems, the field of ‘comparative network analysis’ examines commonalities and differences across

a range of network classes.

Example of table continuing over pages:

Table 5: ApJ costs from 1991 to 2013

Year Subscription Publication
cost charges
($) ($/page)

1991 600 100
1992 650 105
1993 550 103
1994 450 110
1995 410 112
1996 400 114
1997 525 115
1998 590 116
1999 575 115
2000 450 103
2001 490 90
2002 500 88
2003 450 90
2004 460 88
2005 440 79
2006 350 77
2007 325 70

Table continued on next page

Network Neuroscience 10
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Table 5, continued from previous page.

ApJ costs from 1991 to 2013

Year Subscription Publication
cost charges
($) ($/page)

2008 320 65
2009 190 68
2010 280 70
2011 275 68
2012 150 56
2013 140 55

SUPPORTIVE INFORMATION

Here you enter further sources of information, if desired.

ACKNOWLEDGMENTS

Enter your acknowledgments here.
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MAKING YOUR BIBLIOGRAPHY FOR A NETWORK NEUROSCIENCE ARTICLE

Network Neuroscience uses the APA author-date bibliography style, apacite.bst. For more
information on apacite, for examples in how to make your .bib file and more, see:
http://mirror.jmu.edu/pub/CTAN/biblio/bibtex/contrib/apacite/apacite.pdf

(In spite of the mention of apacite cite commands, please use only Natbib commands for in
text citations, as shown above.)

BibTeX

You will need to use BibTeX to form your bibliography; typing in the references would be a
huge and unpleasant task. Look at the NETNSample.bbl file and you’ll see why typing in
the bibitems would be difficult.

For a good basic introduction to using BibTeX, see
https://www.economics.utoronto.ca/osborne/latex/BIBTEX.HTM

When you use BibTeX, the form of the bibliography will be correct. You don’t need to
supply a bibliography style, since that is built into the stjour.cls file when the NETN option
is used (\documentclass[NETN]{stjour}).
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Sample citations

Here are some samples using \citep{}:
(Bullmore & Sporns, 2009; Fortunato & Barthélemy, 2007; Gómez et al., 2009; Liegeois et al.,
2015; Power et al., 2014; Reichardt & Bornholdt, 2006; Rubinov & Sporns, 2011; Scheeringa,
Petersson, Kleinschmidt, Jensen, & Bastiaansen, 2012; Smith et al., 2009; Sporns, 2011; Sporns
& Betzel, 2016)

And more using \citet{}
Allen et al. (2012); Calhoun, Miller, Pearlson, and Adalı (2014); Damaraju et al. (2014); de
Pasquale et al. (2012); Fisher (1915); Gonzalez-Castillo et al. (2014); Hutchison et al. (2013);
Liu and Duyn (2013); Nooner et al. (2012); Tagliazucchi et al. (2012)
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